diff --git a/README.md b/README.md
index 870723be9..33aef6984 100644
--- a/README.md
+++ b/README.md
@@ -25,6 +25,7 @@
 </div>
 
 ## Latest News
+* [2024/01] [Construct Refined 13B Private Model With Just $5000 USD, Upgraded Colossal-AI Llama-2 Open Source](https://hpc-ai.com/blog/colossal-llama-2-13b)
 * [2023/11] [Enhanced MoE Parallelism, Open-source MoE Model Training Can Be 9 Times More Efficient](https://www.hpc-ai.tech/blog/enhanced-moe-parallelism-open-source-moe-model-training-can-be-9-times-more-efficient)
 * [2023/09] [One Half-Day of Training Using a Few Hundred Dollars Yields Similar Results to Mainstream Large Models, Open-Source and Commercial-Free Domain-Specific LLM Solution](https://www.hpc-ai.tech/blog/one-half-day-of-training-using-a-few-hundred-dollars-yields-similar-results-to-mainstream-large-models-open-source-and-commercial-free-domain-specific-llm-solution)
 * [2023/09] [70 Billion Parameter LLaMA2 Model Training Accelerated by 195%](https://www.hpc-ai.tech/blog/70b-llama2-training)
@@ -33,8 +34,6 @@
 * [2023/03] [ColossalChat: An Open-Source Solution for Cloning ChatGPT With a Complete RLHF Pipeline](https://medium.com/@yangyou_berkeley/colossalchat-an-open-source-solution-for-cloning-chatgpt-with-a-complete-rlhf-pipeline-5edf08fb538b)
 * [2023/03] [Intel and Colossal-AI Partner to Deliver Cost-Efficient Open-Source Solution for Protein Folding Structure Prediction](https://www.hpc-ai.tech/blog/intel-habana)
 * [2023/03] [AWS and Google Fund Colossal-AI with Startup Cloud Programs](https://www.hpc-ai.tech/blog/aws-and-google-fund-colossal-ai-with-startup-cloud-programs)
-* [2023/02] [Open Source Solution Replicates ChatGPT Training Process! Ready to go with only 1.6GB GPU Memory](https://www.hpc-ai.tech/blog/colossal-ai-chatgpt)
-* [2023/01] [Hardware Savings Up to 46 Times for AIGC and  Automatic Parallelism](https://medium.com/pytorch/latest-colossal-ai-boasts-novel-automatic-parallelism-and-offers-savings-up-to-46x-for-stable-1453b48f3f02)
 
 ## Table of Contents
 <ul>
@@ -131,12 +130,18 @@ distributed training and inference in a few lines.
 
 ### Colossal-LLaMA-2
 
-- One half-day of training using a few hundred dollars yields similar results to mainstream large models, open-source and commercial-free domain-specific LLM solution.
+- 7B: One half-day of training using a few hundred dollars yields similar results to mainstream large models, open-source and commercial-free domain-specific LLM solution.
 [[code]](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Colossal-LLaMA-2)
 [[blog]](https://www.hpc-ai.tech/blog/one-half-day-of-training-using-a-few-hundred-dollars-yields-similar-results-to-mainstream-large-models-open-source-and-commercial-free-domain-specific-llm-solution)
 [[HuggingFace model weights]](https://huggingface.co/hpcai-tech/Colossal-LLaMA-2-7b-base)
 [[Modelscope model weights]](https://www.modelscope.cn/models/colossalai/Colossal-LLaMA-2-7b-base/summary)
 
+- 13B: Construct refined 13B private model with just $5000 USD.
+[[code]](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Colossal-LLaMA-2)
+[[blog]](https://hpc-ai.com/blog/colossal-llama-2-13b)
+[[HuggingFace model weights]](https://huggingface.co/hpcai-tech/Colossal-LLaMA-2-13b-base)
+[[Modelscope model weights]](https://www.modelscope.cn/models/colossalai/Colossal-LLaMA-2-13b-base/summary)
+
 |              Model             |  Backbone  | Tokens Consumed |     MMLU (5-shot)    | CMMLU (5-shot)| AGIEval (5-shot) | GAOKAO (0-shot) | CEval (5-shot)  |
 | :----------------------------: | :--------: | :-------------: | :------------------: | :-----------: | :--------------: | :-------------: | :-------------: |
 |          Baichuan-7B           |     -      |      1.2T       |    42.32 (42.30)     | 44.53 (44.02) |        38.72     |       36.74     |       42.80     |
@@ -157,6 +162,7 @@ distributed training and inference in a few lines.
 | IDEA-CCNL/Ziya-LLaMA-13B-v1.1  | Llama-13B  |      0.11T      |        50.25         |     40.99     |        40.04     |       30.54     |         -       |
 |  **Colossal-LLaMA-2-7b-base**  | Llama-2-7B |   **0.0085T**   |        53.06         |     49.89     |        51.48     |       58.82     |        50.2     |
 
+
 ### ColossalChat
 
 <div align="center">
diff --git a/applications/Colossal-LLaMA-2/README.md b/applications/Colossal-LLaMA-2/README.md
index 701853863..cf1fc171f 100644
--- a/applications/Colossal-LLaMA-2/README.md
+++ b/applications/Colossal-LLaMA-2/README.md
@@ -43,7 +43,10 @@
 - [Citations](#citations)
 
 ## News
-* [2024/01] [Construct Refined 13B Private Model With Just $5000 USD, Upgraded Colossal-AI Llama-2 Open Source](LINK).[[HuggingFace model weights]](https://huggingface.co/hpcai-tech/Colossal-LLaMA-2-13b-base)
+* [2024/01] [Construct Refined 13B Private Model With Just $5000 USD, Upgraded Colossal-AI Llama-2 Open Source](https://hpc-ai.com/blog/colossal-llama-2-13b).
+[[code]](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Colossal-LLaMA-2)
+[[blog]](https://hpc-ai.com/blog/colossal-llama-2-13b)
+[[HuggingFace model weights]](https://huggingface.co/hpcai-tech/Colossal-LLaMA-2-13b-base)
 [[Modelscope model weights]](https://www.modelscope.cn/models/colossalai/Colossal-LLaMA-2-13b-base/summary)
 * [2023/09] [One Half-Day of Training Using a Few Hundred Dollars Yields Similar Results to Mainstream Large Models, Open-Source and Commercial-Free Domain-Specific Llm Solution](https://www.hpc-ai.tech/blog/one-half-day-of-training-using-a-few-hundred-dollars-yields-similar-results-to-mainstream-large-models-open-source-and-commercial-free-domain-specific-llm-solution).
 [[code]](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Colossal-LLaMA-2)
diff --git a/docs/README-zh-Hans.md b/docs/README-zh-Hans.md
index 7bb4a414b..a0330a62d 100644
--- a/docs/README-zh-Hans.md
+++ b/docs/README-zh-Hans.md
@@ -24,6 +24,7 @@
 </div>
 
 ## 新闻
+* [2024/01] [Construct Refined 13B Private Model With Just $5000 USD, Upgraded Colossal-AI Llama-2 Open Source](https://hpc-ai.com/blog/colossal-llama-2-13b)
 * [2023/11] [Enhanced MoE Parallelism, Open-source MoE Model Training Can Be 9 Times More Efficient](https://www.hpc-ai.tech/blog/enhanced-moe-parallelism-open-source-moe-model-training-can-be-9-times-more-efficient)
 * [2023/09] [One Half-Day of Training Using a Few Hundred Dollars Yields Similar Results to Mainstream Large Models, Open-Source and Commercial-Free Domain-Specific LLM Solution](https://www.hpc-ai.tech/blog/one-half-day-of-training-using-a-few-hundred-dollars-yields-similar-results-to-mainstream-large-models-open-source-and-commercial-free-domain-specific-llm-solution)
 * [2023/09] [70 Billion Parameter LLaMA2 Model Training Accelerated by 195%](https://www.hpc-ai.tech/blog/70b-llama2-training)
@@ -32,8 +33,6 @@
 * [2023/03] [ColossalChat: An Open-Source Solution for Cloning ChatGPT With a Complete RLHF Pipeline](https://medium.com/@yangyou_berkeley/colossalchat-an-open-source-solution-for-cloning-chatgpt-with-a-complete-rlhf-pipeline-5edf08fb538b)
 * [2023/03] [Intel and Colossal-AI Partner to Deliver Cost-Efficient Open-Source Solution for Protein Folding Structure Prediction](https://www.hpc-ai.tech/blog/intel-habana)
 * [2023/03] [AWS and Google Fund Colossal-AI with Startup Cloud Programs](https://www.hpc-ai.tech/blog/aws-and-google-fund-colossal-ai-with-startup-cloud-programs)
-* [2023/02] [Open Source Solution Replicates ChatGPT Training Process! Ready to go with only 1.6GB GPU Memory](https://www.hpc-ai.tech/blog/colossal-ai-chatgpt)
-* [2023/01] [Hardware Savings Up to 46 Times for AIGC and  Automatic Parallelism](https://medium.com/pytorch/latest-colossal-ai-boasts-novel-automatic-parallelism-and-offers-savings-up-to-46x-for-stable-1453b48f3f02)
 
 ## 目录
 <ul>
@@ -124,33 +123,36 @@ Colossal-AI 为您提供了一系列并行组件。我们的目标是让您的
 ## Colossal-AI 成功案例
 ### Colossal-LLaMA-2
 
-- 千元预算半天训练,效果媲美主流大模型,开源可商用中文LLaMA-2
+- 7B:千元预算半天训练,效果媲美主流大模型,开源可商用中文LLaMA-2
 [[代码]](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Colossal-LLaMA-2)
 [[博客]](https://www.hpc-ai.tech/blog/one-half-day-of-training-using-a-few-hundred-dollars-yields-similar-results-to-mainstream-large-models-open-source-and-commercial-free-domain-specific-llm-solution)
 [[模型权重]](https://huggingface.co/hpcai-tech/Colossal-LLaMA-2-7b-base)
 
-|                                |  Backbone  | Tokens Consumed |  |         MMLU         |     CMMLU     | AGIEval | GAOKAO | CEval  |
-| :----------------------------: | :--------: | :-------------: | :------------------: | :-----------: | :-----: | :----: | :----: | :------------------------------: |
-|                                |           |        -        |                |        5-shot        |    5-shot     | 5-shot  | 0-shot | 5-shot |
-|          Baichuan-7B           |     -      |      1.2T       |             |    42.32 (42.30)     | 44.53 (44.02) |  38.72  | 36.74  | 42.80  |
-|       Baichuan-13B-Base        |     -      |      1.4T       |             |    50.51 (51.60)     | 55.73 (55.30) |  47.20  | 51.41  | 53.60  |
-|       Baichuan2-7B-Base        |     -      |      2.6T       |             |    46.97 (54.16)     | 57.67 (57.07) |  45.76  | 52.60  | 54.00  |
-|       Baichuan2-13B-Base       |     -      |      2.6T       |             |    54.84 (59.17)     | 62.62 (61.97) |  52.08  | 58.25  | 58.10  |
-|           ChatGLM-6B           |     -      |      1.0T       |             |    39.67 (40.63)     |   41.17 (-)   |  40.10  | 36.53  | 38.90  |
-|          ChatGLM2-6B           |     -      |      1.4T       |             |    44.74 (45.46)     |   49.40 (-)   |  46.36  | 45.49  | 51.70  |
-|          InternLM-7B           |     -      |      1.6T       |                |    46.70 (51.00)     |   52.00 (-)   |  44.77  | 61.64  | 52.80  |
-|            Qwen-7B             |     -      |      2.2T       |             | 54.29 (56.70) | 56.03 (58.80) |  52.47  | 56.42  | 59.60  |
-|                                |            |                 |                 |                      |               |         |        |        |
-|           Llama-2-7B           |     -      |      2.0T       |             |    44.47 (45.30)     |   32.97 (-)   |  32.60  | 25.46  |   -    |
-| Linly-AI/Chinese-LLaMA-2-7B-hf | Llama-2-7B |      1.0T       |             |        37.43         |     29.92     |  32.00  | 27.57  |   -    |
-| wenge-research/yayi-7b-llama2  | Llama-2-7B |        -        |                |        38.56         |     31.52     |  30.99  | 25.95  |   -    |
-| ziqingyang/chinese-llama-2-7b  | Llama-2-7B |        -        |                |        33.86         |     34.69     |  34.52  | 25.18  |  34.2  |
-| TigerResearch/tigerbot-7b-base | Llama-2-7B |      0.3T       |             |        43.73         |     42.04     |  37.64  | 30.61  |   -    |
-|  LinkSoul/Chinese-Llama-2-7b   | Llama-2-7B |        -        |                |        48.41         |     38.31     |  38.45  | 27.72  |   -    |
-|       FlagAlpha/Atom-7B        | Llama-2-7B |      0.1T       |             |        49.96         |     41.10     |  39.83  | 33.00  |   -    |
-| IDEA-CCNL/Ziya-LLaMA-13B-v1.1  | Llama-13B  |      0.11T      |            |        50.25         |     40.99     |  40.04  | 30.54  |   -    |
-|  |  |  |  |  |  |  |  |  |
-|    **Colossal-LLaMA-2-7b-base**    | Llama-2-7B |      **0.0085T**      |            |        53.06         |     49.89     |  51.48  | 58.82  |  50.2  |
+- 13B: 万元预算打造高质量13B私有模型
+[[code]](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Colossal-LLaMA-2)
+[[blog]](https://hpc-ai.com/blog/colossal-llama-2-13b)
+[[HuggingFace model weights]](https://huggingface.co/hpcai-tech/Colossal-LLaMA-2-13b-base)
+[[Modelscope model weights]](https://www.modelscope.cn/models/colossalai/Colossal-LLaMA-2-13b-base/summary)
+
+|              Model             |  Backbone  | Tokens Consumed |     MMLU (5-shot)    | CMMLU (5-shot)| AGIEval (5-shot) | GAOKAO (0-shot) | CEval (5-shot)  |
+| :----------------------------: | :--------: | :-------------: | :------------------: | :-----------: | :--------------: | :-------------: | :-------------: |
+|          Baichuan-7B           |     -      |      1.2T       |    42.32 (42.30)     | 44.53 (44.02) |        38.72     |       36.74     |       42.80     |
+|       Baichuan-13B-Base        |     -      |      1.4T       |    50.51 (51.60)     | 55.73 (55.30) |        47.20     |       51.41     |       53.60     |
+|       Baichuan2-7B-Base        |     -      |      2.6T       |    46.97 (54.16)     | 57.67 (57.07) |        45.76     |       52.60     |       54.00     |
+|       Baichuan2-13B-Base       |     -      |      2.6T       |    54.84 (59.17)     | 62.62 (61.97) |        52.08     |       58.25     |       58.10     |
+|           ChatGLM-6B           |     -      |      1.0T       |    39.67 (40.63)     |   41.17 (-)   |        40.10     |       36.53     |       38.90     |
+|          ChatGLM2-6B           |     -      |      1.4T       |    44.74 (45.46)     |   49.40 (-)   |        46.36     |       45.49     |       51.70     |
+|          InternLM-7B           |     -      |      1.6T       |    46.70 (51.00)     |   52.00 (-)   |        44.77     |       61.64     |       52.80     |
+|            Qwen-7B             |     -      |      2.2T       |        54.29 (56.70) | 56.03 (58.80) |        52.47     |       56.42     |       59.60     |
+|           Llama-2-7B           |     -      |      2.0T       |    44.47 (45.30)     |   32.97 (-)   |        32.60     |       25.46     |         -       |
+| Linly-AI/Chinese-LLaMA-2-7B-hf | Llama-2-7B |      1.0T       |        37.43         |     29.92     |        32.00     |       27.57     |         -       |
+| wenge-research/yayi-7b-llama2  | Llama-2-7B |        -        |        38.56         |     31.52     |        30.99     |       25.95     |         -       |
+| ziqingyang/chinese-llama-2-7b  | Llama-2-7B |        -        |        33.86         |     34.69     |        34.52     |       25.18     |        34.2     |
+| TigerResearch/tigerbot-7b-base | Llama-2-7B |      0.3T       |        43.73         |     42.04     |        37.64     |       30.61     |         -       |
+|  LinkSoul/Chinese-Llama-2-7b   | Llama-2-7B |        -        |        48.41         |     38.31     |        38.45     |       27.72     |         -       |
+|       FlagAlpha/Atom-7B        | Llama-2-7B |      0.1T       |        49.96         |     41.10     |        39.83     |       33.00     |         -       |
+| IDEA-CCNL/Ziya-LLaMA-13B-v1.1  | Llama-13B  |      0.11T      |        50.25         |     40.99     |        40.04     |       30.54     |         -       |
+|  **Colossal-LLaMA-2-7b-base**  | Llama-2-7B |   **0.0085T**   |        53.06         |     49.89     |        51.48     |       58.82     |        50.2     |
 
 
 ### ColossalChat