diff --git a/tests/test_infer/test_continuous_batching.py b/tests/test_infer/test_continuous_batching.py index a88798619..08b44752b 100644 --- a/tests/test_infer/test_continuous_batching.py +++ b/tests/test_infer/test_continuous_batching.py @@ -3,10 +3,10 @@ import random import numpy as np import pytest import torch -from transformers import AutoTokenizer, GenerationConfig, LlamaForCausalLM +from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM import colossalai -from colossalai.inference.config import _DEFAULT_PROMPT_TEMPLATES, InferenceConfig +from colossalai.inference.config import InferenceConfig from colossalai.inference.core.engine import InferenceEngine from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn @@ -28,69 +28,37 @@ def generate_inputs(num_sequences, min_length, max_length): return sequences -@parameterize( - "test_config", - [ - { - "max_batch_size": 8, - "max_output_len": 512, - "max_input_len": 64, - "do_sample": False, - } - ], -) -def check_inference_engine(test_config, use_engine=False, prompt_template=None): +@parameterize("n_multiple", [10]) +@parameterize("max_batch_size", [8]) +@parameterize("max_input_len", [128]) +@parameterize("max_output_len", [128]) +def check_inference_engine(n_multiple, max_batch_size, max_input_len, max_output_len): setup_seed(20) - max_batch_size = test_config["max_batch_size"] - max_input_len = test_config["max_input_len"] - max_output_len = test_config["max_output_len"] - do_sample = test_config["do_sample"] - top_p = 0.5 - top_k = 50 - tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0") - model = LlamaForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0").cuda().half() + + tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") + model = LlamaForCausalLM(LlamaConfig(num_hidden_layers=2)).cuda() model = model.eval() - inputs_token_ids = generate_inputs(10 * max_batch_size, min_length=10, max_length=max_input_len) + inputs_token_ids = generate_inputs( + n_multiple * max_batch_size, min_length=max_input_len // 2, max_length=max_input_len + ) + inference_config = InferenceConfig( + max_batch_size=max_batch_size, max_input_len=max_input_len, max_output_len=max_output_len + ) + inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True) + assert inference_engine.generation_config.max_new_tokens == max_output_len - if use_engine: - inference_config = InferenceConfig( - max_batch_size=max_batch_size, max_output_len=max_output_len, prompt_template=prompt_template - ) - inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True) - assert inference_engine.generation_config.max_new_tokens == max_output_len - inference_engine.add_request(prompts_token_ids=inputs_token_ids) - assert inference_engine.request_handler._has_waiting() - generation_config = GenerationConfig(do_sample=do_sample, top_p=top_p, top_k=top_k) - outputs = inference_engine.generate(generation_config=generation_config) - else: - if prompt_template: - # apply prompt template - inputs = [_DEFAULT_PROMPT_TEMPLATES[prompt_template].format(input_text=input_text) for input_text in inputs] - tokenizer.pad_token = tokenizer.eos_token - tokenizer.pad_token_id = tokenizer.eos_token_id - inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"] - inputs = inputs.cuda() - generation_config = GenerationConfig( - do_sample=do_sample, - top_p=top_p, - top_k=top_k, - pad_token_id=tokenizer.pad_token_id, - max_new_tokens=max_output_len, - ) - outputs = model.generate(inputs, generation_config=generation_config) - outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) - assert len(outputs) == 10 * max_batch_size + inference_engine.add_request(prompts_token_ids=inputs_token_ids) + assert inference_engine.request_handler._has_waiting() - -@parameterize("prompt_template", [None, "llama"]) -def check_continuous_batching(prompt_template): - check_inference_engine(use_engine=True, prompt_template=prompt_template) + outputs = inference_engine.generate() + assert not inference_engine.request_handler._has_waiting() + assert len(outputs) == n_multiple * max_batch_size def run_dist(rank, world_size, port): colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost") - check_continuous_batching() + check_inference_engine() @pytest.mark.dist