mirror of https://github.com/hpcaitech/ColossalAI
[tensor] support runtime ShardingSpec apply (#1453)
* [tensor] support runtime ShardingSpec apply * polish code * polish codepull/1469/head
parent
177d3f5718
commit
b73fb7a077
|
@ -1,6 +1,7 @@
|
||||||
from functools import reduce
|
from functools import reduce
|
||||||
import operator
|
import operator
|
||||||
import torch
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
|
||||||
|
|
||||||
class DeviceMesh:
|
class DeviceMesh:
|
||||||
|
@ -18,9 +19,13 @@ class DeviceMesh:
|
||||||
communication cost (default: None)
|
communication cost (default: None)
|
||||||
mesh_beta (List[float], optional): coefficients used for computing
|
mesh_beta (List[float], optional): coefficients used for computing
|
||||||
communication cost (default: None)
|
communication cost (default: None)
|
||||||
|
init_process_group (bool, optional): initialize logical process group
|
||||||
|
during initializing the DeviceMesh instance if the init_process_group set to True.
|
||||||
|
Otherwise, users need to call create_process_groups_for_logical_mesh manually to init logical process group.
|
||||||
|
(default: False)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, physical_mesh_id, mesh_shape, mesh_alpha=None, mesh_beta=None):
|
def __init__(self, physical_mesh_id, mesh_shape, mesh_alpha=None, mesh_beta=None, init_process_group=False):
|
||||||
self.physical_mesh_id = physical_mesh_id
|
self.physical_mesh_id = physical_mesh_id
|
||||||
self.mesh_shape = mesh_shape
|
self.mesh_shape = mesh_shape
|
||||||
self._logical_mesh_id = self.physical_mesh_id.reshape(self.mesh_shape)
|
self._logical_mesh_id = self.physical_mesh_id.reshape(self.mesh_shape)
|
||||||
|
@ -34,6 +39,8 @@ class DeviceMesh:
|
||||||
mesh_beta = [1] * len(self.mesh_shape)
|
mesh_beta = [1] * len(self.mesh_shape)
|
||||||
self.mesh_alpha = tuple(mesh_alpha)
|
self.mesh_alpha = tuple(mesh_alpha)
|
||||||
self.mesh_beta = tuple(mesh_beta)
|
self.mesh_beta = tuple(mesh_beta)
|
||||||
|
if init_process_group:
|
||||||
|
self.process_groups_dict = self.create_process_groups_for_logical_mesh()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def shape(self):
|
def shape(self):
|
||||||
|
@ -57,6 +64,28 @@ class DeviceMesh:
|
||||||
else:
|
else:
|
||||||
self._global_rank_to_logical_rank_map(inner_tensor, index_list + [index])
|
self._global_rank_to_logical_rank_map(inner_tensor, index_list + [index])
|
||||||
|
|
||||||
|
def create_process_groups_for_logical_mesh(self):
|
||||||
|
'''
|
||||||
|
This method is used to initialize the logical process groups which will be used in communications
|
||||||
|
among logical device mesh.
|
||||||
|
Note: if init_process_group set to False, you have to call this method manually. Otherwise,
|
||||||
|
the communication related function, such as ShapeConsistencyManager.apply will raise errors.
|
||||||
|
'''
|
||||||
|
process_groups_dict = {}
|
||||||
|
check_duplicate_list = []
|
||||||
|
global_rank_flatten_list = self.physical_mesh_id.view(-1).tolist()
|
||||||
|
for global_rank in global_rank_flatten_list:
|
||||||
|
process_groups = self.global_rank_to_process_groups_with_global_rank(global_rank)
|
||||||
|
for axis, process_group in process_groups.items():
|
||||||
|
if axis not in process_groups_dict:
|
||||||
|
process_groups_dict[axis] = []
|
||||||
|
if process_group not in check_duplicate_list:
|
||||||
|
check_duplicate_list.append(process_group)
|
||||||
|
process_group_handler = dist.new_group(process_group)
|
||||||
|
process_groups_dict[axis].append((process_group, process_group_handler))
|
||||||
|
|
||||||
|
return process_groups_dict
|
||||||
|
|
||||||
def global_rank_to_logical_rank(self, rank):
|
def global_rank_to_logical_rank(self, rank):
|
||||||
return self.convert_map[rank]
|
return self.convert_map[rank]
|
||||||
|
|
||||||
|
|
|
@ -3,15 +3,18 @@ from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
||||||
from colossalai.tensor.utils import all_gather_simulator, all_to_all_simulator, shard_simulator
|
from colossalai.tensor.utils import all_gather_simulator, all_to_all_simulator, shard_simulator
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
|
import torch.distributed as dist
|
||||||
import math
|
import math
|
||||||
from functools import reduce
|
from functools import reduce
|
||||||
import operator
|
import operator
|
||||||
|
from torch.distributed import ReduceOp
|
||||||
|
|
||||||
|
|
||||||
class CollectiveCommPattern(Enum):
|
class CollectiveCommPattern(Enum):
|
||||||
ALLGATHER = 'all_gather'
|
ALLGATHER = 'all_gather'
|
||||||
ALLTOALL = 'all_to_all'
|
ALLTOALL = 'all_to_all'
|
||||||
SHARD = 'shard'
|
SHARD = 'shard'
|
||||||
|
ALLREDUCE = 'all_reduce'
|
||||||
|
|
||||||
|
|
||||||
class CommSpec:
|
class CommSpec:
|
||||||
|
@ -41,7 +44,7 @@ class CommSpec:
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
res_list = ["CommSpec:("]
|
res_list = ["CommSpec:("]
|
||||||
if self.comm_pattern == CollectiveCommPattern.ALLGATHER:
|
if self.comm_pattern == CollectiveCommPattern.ALLGATHER:
|
||||||
res_list.append(f"comm_pattern:allgather, ")
|
res_list.append(f"comm_pattern:all_gather, ")
|
||||||
res_list.append(f"gather_dim:{self.gather_dim}, ")
|
res_list.append(f"gather_dim:{self.gather_dim}, ")
|
||||||
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
|
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
|
||||||
elif self.comm_pattern == CollectiveCommPattern.ALLTOALL:
|
elif self.comm_pattern == CollectiveCommPattern.ALLTOALL:
|
||||||
|
@ -49,15 +52,19 @@ class CommSpec:
|
||||||
res_list.append(f"gather_dim:{self.gather_dim}, ")
|
res_list.append(f"gather_dim:{self.gather_dim}, ")
|
||||||
res_list.append(f"shard_dim:{self.shard_dim}, ")
|
res_list.append(f"shard_dim:{self.shard_dim}, ")
|
||||||
res_list.append(f"logical_process_axis: {self.logical_process_axis})")
|
res_list.append(f"logical_process_axis: {self.logical_process_axis})")
|
||||||
else:
|
elif self.comm_pattern == CollectiveCommPattern.SHARD:
|
||||||
res_list.append(f"comm_pattern:shard, ")
|
res_list.append(f"comm_pattern:shard, ")
|
||||||
res_list.append(f"shard_dim:{self.shard_dim}, ")
|
res_list.append(f"shard_dim:{self.shard_dim}, ")
|
||||||
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
|
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
|
||||||
|
elif self.comm_pattern == CollectiveCommPattern.ALLREDUCE:
|
||||||
|
res_list.append(f"comm_pattern:all_reduce, ")
|
||||||
|
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
|
||||||
|
|
||||||
return ''.join(res_list)
|
return ''.join(res_list)
|
||||||
|
|
||||||
def get_comm_cost(self):
|
def get_comm_cost(self):
|
||||||
'''
|
'''
|
||||||
For all_gather and all2all operation, the formula provided in DeviceMesh with alpha-beta model is used to
|
For all_gather, all2all, and all_reduce operation, the formula provided in DeviceMesh with alpha-beta model is used to
|
||||||
compute the communication cost.
|
compute the communication cost.
|
||||||
For shard operation, it is an on-chip operation, so the communication cost is zero.
|
For shard operation, it is an on-chip operation, so the communication cost is zero.
|
||||||
'''
|
'''
|
||||||
|
@ -66,10 +73,77 @@ class CommSpec:
|
||||||
return self.sharding_spec.device_mesh.all_gather_cost(comm_size, self.logical_process_axis)
|
return self.sharding_spec.device_mesh.all_gather_cost(comm_size, self.logical_process_axis)
|
||||||
if self.comm_pattern == CollectiveCommPattern.ALLTOALL:
|
if self.comm_pattern == CollectiveCommPattern.ALLTOALL:
|
||||||
return self.sharding_spec.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis)
|
return self.sharding_spec.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis)
|
||||||
return 0
|
if self.comm_pattern == CollectiveCommPattern.ALLREDUCE:
|
||||||
|
return self.sharding_spec.device_mesh.all_reduce_cost(comm_size, self.logical_process_axis)
|
||||||
|
if self.comm_pattern == CollectiveCommPattern.SHARD:
|
||||||
|
return 0
|
||||||
|
raise RuntimeError(f"Could not find a matching CollectiveCommPattern for {self.comm_pattern}.")
|
||||||
|
|
||||||
def covert_spec_to_action(self):
|
def covert_spec_to_action(self, tensor):
|
||||||
pass
|
'''
|
||||||
|
Convert CommSpec into runtime action, implement real collection communication to target tensor.
|
||||||
|
The collection communication action is directed by the CommSpec.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
tensor(torch.Tensor): Tensor stored in each device, which could be different in different ranks.
|
||||||
|
'''
|
||||||
|
device_mesh = self.sharding_spec.device_mesh
|
||||||
|
process_groups_list = device_mesh.process_groups_dict[self.logical_process_axis]
|
||||||
|
|
||||||
|
if self.comm_pattern == CollectiveCommPattern.ALLGATHER:
|
||||||
|
for rank_list, process_group in process_groups_list:
|
||||||
|
if dist.get_rank() in rank_list:
|
||||||
|
tensor_list = [
|
||||||
|
torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device)
|
||||||
|
for _ in range(self.sharding_spec.device_mesh.mesh_shape[self.logical_process_axis])
|
||||||
|
]
|
||||||
|
tensor = tensor
|
||||||
|
group = process_group
|
||||||
|
dist.all_gather(tensor_list, tensor, group=group)
|
||||||
|
tensor.data = torch.cat(tuple(tensor_list), self.gather_dim)
|
||||||
|
|
||||||
|
elif self.comm_pattern == CollectiveCommPattern.SHARD:
|
||||||
|
for rank_list, process_group in process_groups_list:
|
||||||
|
if dist.get_rank() in rank_list:
|
||||||
|
tensor = tensor
|
||||||
|
dim = self.shard_dim
|
||||||
|
length = tensor.shape[self.shard_dim] // len(rank_list)
|
||||||
|
start = length * rank_list.index(dist.get_rank())
|
||||||
|
tensor.data = torch.narrow(tensor, dim, start, length)
|
||||||
|
|
||||||
|
elif self.comm_pattern == CollectiveCommPattern.ALLTOALL:
|
||||||
|
for rank_list, process_group in process_groups_list:
|
||||||
|
if dist.get_rank() in rank_list:
|
||||||
|
new_shape = list(tensor.shape)
|
||||||
|
new_shape[self.shard_dim] = new_shape[self.shard_dim] // len(rank_list)
|
||||||
|
new_shape = torch.Size(new_shape)
|
||||||
|
output_tensor_list = [
|
||||||
|
torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) for _ in range(len(rank_list))
|
||||||
|
]
|
||||||
|
dim = self.shard_dim
|
||||||
|
length = tensor.shape[self.shard_dim] // len(rank_list)
|
||||||
|
input_tensor_list = [
|
||||||
|
torch.narrow(tensor, dim, length * i, length).contiguous() for i in range(len(rank_list))
|
||||||
|
]
|
||||||
|
group = process_group
|
||||||
|
dist.all_to_all(output_tensor_list, input_tensor_list, group)
|
||||||
|
tensor.data = torch.cat(tuple(output_tensor_list), self.gather_dim)
|
||||||
|
|
||||||
|
elif self.comm_pattern == CollectiveCommPattern.ALLREDUCE:
|
||||||
|
# For the consistency of collective communication operation, we temporally do not
|
||||||
|
# allow all_reduce two different mesh dimensions in the same time.
|
||||||
|
# e.g.: MatMul[(R, S01), (S01, R)] -> Partial(R, R),
|
||||||
|
# all_reduce(Partial, logical_pg=(0, 1)) is NOT allowed, instead
|
||||||
|
# we need to do this in two steps:
|
||||||
|
# 1. all_reduce(Partial, logical_pg=1)
|
||||||
|
# 2. all_reduce(Partial, logical_pg=0)
|
||||||
|
for rank_list, process_group in process_groups_list:
|
||||||
|
if dist.get_rank() in rank_list:
|
||||||
|
dist.all_reduce(tensor, op=ReduceOp.SUM, group=process_group)
|
||||||
|
tensor.data = tensor
|
||||||
|
|
||||||
|
else:
|
||||||
|
tensor.data = tensor
|
||||||
|
|
||||||
|
|
||||||
class ShapeConsistencyManager:
|
class ShapeConsistencyManager:
|
||||||
|
@ -191,7 +265,7 @@ class ShapeConsistencyManager:
|
||||||
else:
|
else:
|
||||||
f_target_pair = (f_index, [])
|
f_target_pair = (f_index, [])
|
||||||
if b_index in source_spec.dim_partition_dict:
|
if b_index in source_spec.dim_partition_dict:
|
||||||
# skip (R, R) -> (R, S01) is NOT allowed
|
# skip (R, S01) -> (S01, R) is NOT allowed
|
||||||
if len(source_spec.dim_partition_dict[b_index]) >= 2:
|
if len(source_spec.dim_partition_dict[b_index]) >= 2:
|
||||||
continue
|
continue
|
||||||
b_target_pair = (b_index, deepcopy(source_spec.dim_partition_dict[b_index]))
|
b_target_pair = (b_index, deepcopy(source_spec.dim_partition_dict[b_index]))
|
||||||
|
@ -409,7 +483,7 @@ class ShapeConsistencyManager:
|
||||||
self.cached_spec_pairs_transform_path[spec_pairs] = (transform_path, comm_action_sequence)
|
self.cached_spec_pairs_transform_path[spec_pairs] = (transform_path, comm_action_sequence)
|
||||||
return (transform_path, comm_action_sequence, total_cost)
|
return (transform_path, comm_action_sequence, total_cost)
|
||||||
|
|
||||||
temp_sharding_spec = deepcopy(source_spec)
|
temp_sharding_spec = source_spec
|
||||||
transform_path.append(temp_sharding_spec)
|
transform_path.append(temp_sharding_spec)
|
||||||
# To avoid dead loop, the loop will break after MAX_TRANSFORM_STEPS transforms
|
# To avoid dead loop, the loop will break after MAX_TRANSFORM_STEPS transforms
|
||||||
while total_steps <= MAX_TRANSFORM_STEPS:
|
while total_steps <= MAX_TRANSFORM_STEPS:
|
||||||
|
@ -428,9 +502,9 @@ class ShapeConsistencyManager:
|
||||||
return (transform_path, comm_action_sequence, total_cost)
|
return (transform_path, comm_action_sequence, total_cost)
|
||||||
|
|
||||||
if spec_difference < best_difference_score:
|
if spec_difference < best_difference_score:
|
||||||
temp_sharding_spec = deepcopy(sharding_spec)
|
temp_sharding_spec = sharding_spec
|
||||||
temp_cost = cost
|
temp_cost = cost
|
||||||
temp_comm_spec = deepcopy(comm_spec)
|
temp_comm_spec = comm_spec
|
||||||
best_difference_score = spec_difference
|
best_difference_score = spec_difference
|
||||||
|
|
||||||
transform_path.append(temp_sharding_spec)
|
transform_path.append(temp_sharding_spec)
|
||||||
|
@ -439,3 +513,67 @@ class ShapeConsistencyManager:
|
||||||
total_steps += 1
|
total_steps += 1
|
||||||
|
|
||||||
raise RuntimeError(f"Could not find a valid transform path with in {MAX_TRANSFORM_STEPS} steps.")
|
raise RuntimeError(f"Could not find a valid transform path with in {MAX_TRANSFORM_STEPS} steps.")
|
||||||
|
|
||||||
|
def apply(self, tensor_with_sharding_spec, target_spec):
|
||||||
|
'''
|
||||||
|
Apply target_spec to tensor with source sharding spec, the transform path is generated by the
|
||||||
|
shape_consistency method.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
tensor_with_sharding_spec (torch.Tensor): a tensor with source sharding spec to be transformed to the target spec.
|
||||||
|
target_spec (ShardingSpec): The tensor transform processes will be directed by the target_spec.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
physical_mesh_id = torch.arange(0, 4)
|
||||||
|
mesh_shape = (2, 2)
|
||||||
|
# [[0, 1,
|
||||||
|
# [2, 3]]
|
||||||
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||||
|
entire_shape = torch.Size((4, 2))
|
||||||
|
shape_consistency_manager = ShapeConsistencyManager()
|
||||||
|
dim_partition_source = {0: [0]}
|
||||||
|
dim_partition_target = {1: [0]}
|
||||||
|
|
||||||
|
# DistSpec:
|
||||||
|
# shard_sequence: S0,R
|
||||||
|
# device_mesh_shape: (2, 2)
|
||||||
|
sharding_spec_source = ShardingSpec(device_mesh, entire_shape, dim_partition_source)
|
||||||
|
|
||||||
|
# DistSpec:
|
||||||
|
# shard_sequence: R,S0
|
||||||
|
# device_mesh_shape: (2, 2)
|
||||||
|
sharding_spec_target = ShardingSpec(device_mesh, entire_shape, dim_partition_target)
|
||||||
|
|
||||||
|
if rank in (0, 1):
|
||||||
|
sharded_tensor_0 = torch.zeros(2, 1)
|
||||||
|
sharded_tensor_1 = torch.ones(2, 1)
|
||||||
|
# tensor([[0., 1.],
|
||||||
|
# [0., 1.]])
|
||||||
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
|
||||||
|
if rank in (2, 3):
|
||||||
|
sharded_tensor_0 = torch.ones(2, 1) * 2
|
||||||
|
sharded_tensor_1 = torch.ones(2, 1) * 3
|
||||||
|
# tensor([[2., 3.],
|
||||||
|
# [2., 3.]])
|
||||||
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
|
||||||
|
|
||||||
|
tensor_to_comm.sharding_spec = sharding_spec_source
|
||||||
|
shape_consistency_manager.apply(tensor_to_comm, sharding_spec_target)
|
||||||
|
print(tensor_to_comm)
|
||||||
|
|
||||||
|
Output in rank0 and rank2:
|
||||||
|
tensor([[0.],
|
||||||
|
[0.],
|
||||||
|
[2.],
|
||||||
|
[2.]])
|
||||||
|
|
||||||
|
Output in rank1 and rank3:
|
||||||
|
tensor([[1.],
|
||||||
|
[1.],
|
||||||
|
[3.],
|
||||||
|
[3.]])
|
||||||
|
'''
|
||||||
|
_, comm_action_sequence, _ = self.shape_consistency(tensor_with_sharding_spec.sharding_spec, target_spec)
|
||||||
|
for comm_spec in comm_action_sequence:
|
||||||
|
comm_spec.covert_spec_to_action(tensor_with_sharding_spec)
|
||||||
|
tensor_with_sharding_spec.sharding_spec = target_spec
|
||||||
|
|
|
@ -0,0 +1,49 @@
|
||||||
|
import torch
|
||||||
|
from functools import partial
|
||||||
|
import pytest
|
||||||
|
import torch.distributed as dist
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
from torch.distributed import ReduceOp
|
||||||
|
|
||||||
|
from colossalai.core import global_context as gpc
|
||||||
|
from colossalai.initialize import launch
|
||||||
|
from colossalai.utils import free_port
|
||||||
|
from colossalai.testing import rerun_if_address_is_in_use
|
||||||
|
from colossalai.device.device_mesh import DeviceMesh
|
||||||
|
|
||||||
|
|
||||||
|
def check_layer(rank, world_size, port):
|
||||||
|
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
|
|
||||||
|
physical_mesh_id = torch.arange(0, 4)
|
||||||
|
assert rank == gpc.get_global_rank()
|
||||||
|
|
||||||
|
tensor_to_check = torch.tensor([2, 2, 2, 2]).cuda()
|
||||||
|
mesh_shape = (2, 2)
|
||||||
|
# [[0, 1,
|
||||||
|
# [2, 3]]
|
||||||
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||||
|
logical_pg_dict = {0: [[0, 2], [1, 3]], 1: [[0, 1], [2, 3]]}
|
||||||
|
logical_process_groups = device_mesh.process_groups_dict
|
||||||
|
|
||||||
|
for mesh_dim, pgs in logical_pg_dict.items():
|
||||||
|
for index, pg in enumerate(pgs):
|
||||||
|
if rank in pg:
|
||||||
|
tensor = torch.ones(4).cuda()
|
||||||
|
group = logical_process_groups[mesh_dim][index][1]
|
||||||
|
dist.all_reduce(tensor, op=ReduceOp.SUM, group=group)
|
||||||
|
assert tensor.equal(tensor_to_check)
|
||||||
|
|
||||||
|
gpc.destroy()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.dist
|
||||||
|
@rerun_if_address_is_in_use()
|
||||||
|
def test_logical_pg():
|
||||||
|
world_size = 4
|
||||||
|
run_func = partial(check_layer, world_size=world_size, port=free_port())
|
||||||
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test_logical_pg()
|
|
@ -0,0 +1,177 @@
|
||||||
|
import torch
|
||||||
|
from functools import partial
|
||||||
|
import pytest
|
||||||
|
import torch.distributed as dist
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
from torch.distributed import ReduceOp
|
||||||
|
from colossalai.core import global_context as gpc
|
||||||
|
from colossalai.initialize import launch
|
||||||
|
from colossalai.utils import free_port
|
||||||
|
from colossalai.testing import rerun_if_address_is_in_use
|
||||||
|
from colossalai.device.device_mesh import DeviceMesh
|
||||||
|
from colossalai.tensor.shape_consistency import CommSpec, CollectiveCommPattern
|
||||||
|
from colossalai.logging import disable_existing_loggers
|
||||||
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||||
|
|
||||||
|
|
||||||
|
def check_all_gather(device_mesh, rank):
|
||||||
|
# tensor to comm
|
||||||
|
if rank in (0, 2):
|
||||||
|
sharded_tensor_to_comm = torch.ones(2, 2).cuda()
|
||||||
|
else:
|
||||||
|
sharded_tensor_to_comm = torch.zeros(2, 2).cuda()
|
||||||
|
|
||||||
|
# tensor to check
|
||||||
|
tensor_to_check = torch.cat((torch.ones(2, 2), torch.zeros(2, 2)), 1).cuda()
|
||||||
|
|
||||||
|
# test all gather
|
||||||
|
dim_partition_dict = {1: [1]}
|
||||||
|
|
||||||
|
# DistSpec:
|
||||||
|
# shard_sequence: R,S1
|
||||||
|
# device_mesh_shape: (2, 2)
|
||||||
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
|
||||||
|
|
||||||
|
# CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1)
|
||||||
|
comm_spec = CommSpec(CollectiveCommPattern.ALLGATHER, sharding_spec, gather_dim=1, logical_process_axis=1)
|
||||||
|
comm_spec.covert_spec_to_action(sharded_tensor_to_comm)
|
||||||
|
|
||||||
|
assert sharded_tensor_to_comm.equal(tensor_to_check)
|
||||||
|
|
||||||
|
|
||||||
|
def check_shard(device_mesh, rank):
|
||||||
|
# tensor to comm
|
||||||
|
sharded_tensor_to_comm_0 = torch.zeros(2, 2).cuda()
|
||||||
|
sharded_tensor_to_comm_1 = torch.ones(2, 2).cuda()
|
||||||
|
# tensor([[0., 0., 1., 1.],
|
||||||
|
# [0., 0., 1., 1.]])
|
||||||
|
tensor_to_shard = torch.cat((sharded_tensor_to_comm_0, sharded_tensor_to_comm_1), 1)
|
||||||
|
|
||||||
|
# test shard
|
||||||
|
dim_partition_dict = {}
|
||||||
|
|
||||||
|
# DistSpec:
|
||||||
|
# shard_sequence: R,R
|
||||||
|
# device_mesh_shape: (2, 2)
|
||||||
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_shard.shape, dim_partition_dict=dim_partition_dict)
|
||||||
|
|
||||||
|
# CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1)
|
||||||
|
comm_spec = CommSpec(CollectiveCommPattern.SHARD, sharding_spec, shard_dim=1, logical_process_axis=1)
|
||||||
|
comm_spec.covert_spec_to_action(tensor_to_shard)
|
||||||
|
|
||||||
|
if rank in (0, 2):
|
||||||
|
assert tensor_to_shard.equal(sharded_tensor_to_comm_0)
|
||||||
|
if rank in (1, 3):
|
||||||
|
assert tensor_to_shard.equal(sharded_tensor_to_comm_1)
|
||||||
|
|
||||||
|
|
||||||
|
def check_all_to_all(device_mesh, rank):
|
||||||
|
# tensor to comm
|
||||||
|
if rank in (0, 1):
|
||||||
|
sharded_tensor_0 = torch.zeros(2, 1)
|
||||||
|
sharded_tensor_1 = torch.ones(2, 1)
|
||||||
|
# tensor([[0., 1.],
|
||||||
|
# [0., 1.]])
|
||||||
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
|
||||||
|
if rank in (2, 3):
|
||||||
|
sharded_tensor_0 = torch.ones(2, 1) * 2
|
||||||
|
sharded_tensor_1 = torch.ones(2, 1) * 3
|
||||||
|
# tensor([[2., 3.],
|
||||||
|
# [2., 3.]])
|
||||||
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
|
||||||
|
|
||||||
|
if rank in (0, 1):
|
||||||
|
# tensor([[0.],
|
||||||
|
# [0.],
|
||||||
|
# [2.],
|
||||||
|
# [2.]])
|
||||||
|
tensor_to_check = torch.tensor([[0], [0], [2], [2]], dtype=tensor_to_comm.dtype).cuda()
|
||||||
|
if rank in (2, 3):
|
||||||
|
# tensor([[1.],
|
||||||
|
# [1.],
|
||||||
|
# [3.],
|
||||||
|
# [3.]])
|
||||||
|
tensor_to_check = torch.tensor([[1], [1], [3], [3]], dtype=tensor_to_comm.dtype).cuda()
|
||||||
|
|
||||||
|
# test shard
|
||||||
|
dim_partition_dict = {0: [0]}
|
||||||
|
|
||||||
|
# DistSpec:
|
||||||
|
# shard_sequence: S0,R
|
||||||
|
# device_mesh_shape: (2, 2)
|
||||||
|
sharding_spec = ShardingSpec(device_mesh, torch.Size((4, 2)), dim_partition_dict=dim_partition_dict)
|
||||||
|
|
||||||
|
# CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1)
|
||||||
|
comm_spec = CommSpec(CollectiveCommPattern.ALLTOALL,
|
||||||
|
sharding_spec,
|
||||||
|
gather_dim=0,
|
||||||
|
shard_dim=1,
|
||||||
|
logical_process_axis=0)
|
||||||
|
comm_spec.covert_spec_to_action(tensor_to_comm)
|
||||||
|
|
||||||
|
assert tensor_to_comm.equal(tensor_to_check)
|
||||||
|
|
||||||
|
|
||||||
|
def check_all_reduce(device_mesh, rank):
|
||||||
|
# tensor to comm
|
||||||
|
tensor_to_comm = torch.ones(2, 2).cuda() * rank
|
||||||
|
|
||||||
|
# reduce through logical process axis 0
|
||||||
|
# tensor to check
|
||||||
|
if rank in (0, 2):
|
||||||
|
# tensor([[2., 2.],
|
||||||
|
# [2., 2.]])
|
||||||
|
tensor_to_check = torch.tensor([[2, 2], [2, 2]], dtype=tensor_to_comm.dtype).cuda()
|
||||||
|
if rank in (1, 3):
|
||||||
|
# tensor([[4., 4.],
|
||||||
|
# [4., 4.]])
|
||||||
|
tensor_to_check = torch.tensor([[4, 4], [4, 4]], dtype=tensor_to_comm.dtype).cuda()
|
||||||
|
|
||||||
|
dim_partition_dict = {}
|
||||||
|
# DistSpec:
|
||||||
|
# shard_sequence: R,R
|
||||||
|
# device_mesh_shape: (2, 2)
|
||||||
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict)
|
||||||
|
|
||||||
|
# CommSpec:CommSpec:(comm_pattern:all_reduce, logical_process_axis:0)
|
||||||
|
comm_spec = CommSpec(CollectiveCommPattern.ALLREDUCE, sharding_spec, logical_process_axis=0)
|
||||||
|
comm_spec.covert_spec_to_action(tensor_to_comm)
|
||||||
|
|
||||||
|
assert tensor_to_comm.equal(tensor_to_check)
|
||||||
|
|
||||||
|
|
||||||
|
def check_comm(rank, world_size, port):
|
||||||
|
disable_existing_loggers()
|
||||||
|
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
|
|
||||||
|
physical_mesh_id = torch.arange(0, 4)
|
||||||
|
assert rank == gpc.get_global_rank()
|
||||||
|
|
||||||
|
mesh_shape = (2, 2)
|
||||||
|
# [[0, 1,
|
||||||
|
# [2, 3]]
|
||||||
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||||
|
# test all gather
|
||||||
|
check_all_gather(device_mesh, rank)
|
||||||
|
|
||||||
|
# test shard
|
||||||
|
check_shard(device_mesh, rank)
|
||||||
|
|
||||||
|
# test all to all
|
||||||
|
check_all_to_all(device_mesh, rank)
|
||||||
|
|
||||||
|
# test all reduce
|
||||||
|
check_all_reduce(device_mesh, rank)
|
||||||
|
gpc.destroy()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.dist
|
||||||
|
@rerun_if_address_is_in_use()
|
||||||
|
def test_comm_spec():
|
||||||
|
world_size = 4
|
||||||
|
run_func = partial(check_comm, world_size=world_size, port=free_port())
|
||||||
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test_comm_spec()
|
|
@ -0,0 +1,81 @@
|
||||||
|
from functools import partial
|
||||||
|
import pytest
|
||||||
|
import torch
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
|
||||||
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||||
|
from colossalai.device.device_mesh import DeviceMesh
|
||||||
|
from colossalai.initialize import launch
|
||||||
|
from colossalai.utils import free_port
|
||||||
|
from colossalai.testing import rerun_if_address_is_in_use
|
||||||
|
from colossalai.logging import disable_existing_loggers
|
||||||
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager, CollectiveCommPattern
|
||||||
|
|
||||||
|
|
||||||
|
def check_apply(rank, world_size, port):
|
||||||
|
disable_existing_loggers()
|
||||||
|
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
|
|
||||||
|
physical_mesh_id = torch.arange(0, 4)
|
||||||
|
mesh_shape = (2, 2)
|
||||||
|
# [[0, 1,
|
||||||
|
# [2, 3]]
|
||||||
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||||
|
entire_shape = torch.Size((4, 2))
|
||||||
|
shape_consistency_manager = ShapeConsistencyManager()
|
||||||
|
dim_partition_source = {0: [0]}
|
||||||
|
dim_partition_target = {1: [0]}
|
||||||
|
|
||||||
|
# DistSpec:
|
||||||
|
# shard_sequence: S0,R
|
||||||
|
# device_mesh_shape: (2, 2)
|
||||||
|
sharding_spec_source = ShardingSpec(device_mesh, entire_shape, dim_partition_source)
|
||||||
|
|
||||||
|
# DistSpec:
|
||||||
|
# shard_sequence: R,S0
|
||||||
|
# device_mesh_shape: (2, 2)
|
||||||
|
sharding_spec_target = ShardingSpec(device_mesh, entire_shape, dim_partition_target)
|
||||||
|
|
||||||
|
if rank in (0, 1):
|
||||||
|
sharded_tensor_0 = torch.zeros(2, 1)
|
||||||
|
sharded_tensor_1 = torch.ones(2, 1)
|
||||||
|
# tensor([[0., 1.],
|
||||||
|
# [0., 1.]])
|
||||||
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
|
||||||
|
if rank in (2, 3):
|
||||||
|
sharded_tensor_0 = torch.ones(2, 1) * 2
|
||||||
|
sharded_tensor_1 = torch.ones(2, 1) * 3
|
||||||
|
# tensor([[2., 3.],
|
||||||
|
# [2., 3.]])
|
||||||
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
|
||||||
|
|
||||||
|
if rank in (0, 1):
|
||||||
|
# tensor([[0.],
|
||||||
|
# [0.],
|
||||||
|
# [2.],
|
||||||
|
# [2.]])
|
||||||
|
tensor_to_check = torch.tensor([[0], [0], [2], [2]], dtype=tensor_to_comm.dtype).cuda()
|
||||||
|
if rank in (2, 3):
|
||||||
|
# tensor([[1.],
|
||||||
|
# [1.],
|
||||||
|
# [3.],
|
||||||
|
# [3.]])
|
||||||
|
tensor_to_check = torch.tensor([[1], [1], [3], [3]], dtype=tensor_to_comm.dtype).cuda()
|
||||||
|
|
||||||
|
tensor_to_comm.sharding_spec = sharding_spec_source
|
||||||
|
shape_consistency_manager.apply(tensor_to_comm, sharding_spec_target)
|
||||||
|
print(tensor_to_comm)
|
||||||
|
assert tensor_to_comm.equal(tensor_to_check)
|
||||||
|
assert str(tensor_to_comm.sharding_spec.sharding_sequence) == str(sharding_spec_target.sharding_sequence)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.dist
|
||||||
|
@rerun_if_address_is_in_use()
|
||||||
|
def test_apply():
|
||||||
|
world_size = 4
|
||||||
|
run_func = partial(check_apply, world_size=world_size, port=free_port())
|
||||||
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test_apply()
|
Loading…
Reference in New Issue