mirror of https://github.com/hpcaitech/ColossalAI
[gemini] optimize reduce scatter d2h copy
parent
b96c6390f4
commit
b5ae587d50
|
@ -368,6 +368,11 @@ class GeminiPlugin(DPPluginBase):
|
|||
assert precision in SUPPORTED_PRECISION, f"precision {precision} is not supported"
|
||||
if get_accelerator().name == "npu":
|
||||
assert placement_policy == "static", "NPU only supports static placement policy"
|
||||
if placement_policy == "auto" and enable_async_reduce:
|
||||
logging.warning(
|
||||
f"enable_async_reduce requires pin_memory to achieve best performance, which is not implicitly set."
|
||||
)
|
||||
pin_memory = True
|
||||
self.gemini_config = dict(
|
||||
chunk_config_dict=chunk_config_dict,
|
||||
chunk_init_device=(chunk_init_device or get_accelerator().get_current_device()),
|
||||
|
|
|
@ -339,7 +339,7 @@ class Chunk:
|
|||
if self.cuda_shard:
|
||||
return
|
||||
|
||||
self.cuda_shard = self.cpu_shard.to(get_accelerator().get_current_device())
|
||||
self.cuda_shard = self.cpu_shard.to(get_accelerator().get_current_device(), non_blocking=True)
|
||||
|
||||
if not self.pin_memory:
|
||||
self.cpu_shard = None
|
||||
|
@ -349,7 +349,7 @@ class Chunk:
|
|||
|
||||
if self.pin_memory:
|
||||
if force_copy or not self.cpu_vis_flag:
|
||||
self.cpu_shard.copy_(self.cuda_shard)
|
||||
self.cpu_shard.copy_(self.cuda_shard, non_blocking=True)
|
||||
# if cpu_shard has been visited
|
||||
# copy operation is not need
|
||||
else:
|
||||
|
@ -547,7 +547,7 @@ class Chunk:
|
|||
# only be called when optimizer state is in CPU memory
|
||||
# the grad and param should be in the same device
|
||||
assert self.cuda_shard is None
|
||||
temp = optim_chunk.cpu_shard.to(get_accelerator().get_current_device())
|
||||
temp = optim_chunk.cpu_shard.to(get_accelerator().get_current_device(), non_blocking=True)
|
||||
# avoid to transform FP32 in CPU
|
||||
self.cuda_shard = temp.to(self.dtype)
|
||||
|
||||
|
|
|
@ -145,6 +145,12 @@ class GeminiDDP(ModelWrapper):
|
|||
self.extra_dp_group = extra_dp_group
|
||||
|
||||
self.master_weights = master_weights
|
||||
self.enable_async_reduce = enable_async_reduce
|
||||
|
||||
if enable_async_reduce:
|
||||
self.async_reduce_stream = torch.cuda.Stream()
|
||||
else:
|
||||
self.async_reduce_stream = None
|
||||
|
||||
self._logger = get_dist_logger()
|
||||
|
||||
|
@ -174,6 +180,7 @@ class GeminiDDP(ModelWrapper):
|
|||
super().__init__(module)
|
||||
self._non_persistent_buffers_set = self._get_non_persistent_buffers_set(module)
|
||||
self._cast_buffers()
|
||||
|
||||
# register grad hook
|
||||
for p in module.parameters():
|
||||
if is_ddp_ignored(p):
|
||||
|
@ -189,7 +196,7 @@ class GeminiDDP(ModelWrapper):
|
|||
master_weights=self.master_weights,
|
||||
enable_gradient_accumulation=self.enable_gradient_accumulation,
|
||||
p=p,
|
||||
async_reduce=enable_async_reduce,
|
||||
async_reduce_stream=self.async_reduce_stream,
|
||||
)
|
||||
)
|
||||
|
||||
|
@ -337,10 +344,8 @@ class GeminiDDP(ModelWrapper):
|
|||
setattr(param, "_gemini_reduced", False)
|
||||
|
||||
def _post_backward(self):
|
||||
for param in self.param2name:
|
||||
if hasattr(param, "_release_grad_chunk_cb"):
|
||||
param._release_grad_chunk_cb()
|
||||
delattr(param, "_release_grad_chunk_cb")
|
||||
if self.enable_async_reduce:
|
||||
self.async_reduce_stream.synchronize()
|
||||
|
||||
if self.chunk_manager.accessed_mem != 0:
|
||||
error_params = ["Reduction failed at followed parameters:"]
|
||||
|
@ -379,7 +384,7 @@ class GeminiDDP(ModelWrapper):
|
|||
master_weights: bool,
|
||||
enable_gradient_accumulation: bool,
|
||||
p: nn.Parameter,
|
||||
async_reduce: bool,
|
||||
async_reduce_stream: Optional[torch.cuda.Stream] = None,
|
||||
):
|
||||
setattr(p, "_gemini_reduced", True)
|
||||
empty_grad = torch.empty_like(grad)
|
||||
|
@ -415,56 +420,31 @@ class GeminiDDP(ModelWrapper):
|
|||
grad_chunk.copy_tensor_to_chunk_slice(p, grad, update_ptr=chunk_manager.reuse_fp16_chunk)
|
||||
else:
|
||||
grad_chunk.add_tensor_to_chunk_slice(p, grad)
|
||||
reduced = chunk_manager.reduce_chunk(grad_chunk, async_op=async_reduce)
|
||||
if reduced: # if not async, can release immediately, else release in when work finished
|
||||
if async_reduce:
|
||||
# dirty fix by installing callback
|
||||
assert not hasattr(p, "_release_grad_chunk_cb")
|
||||
|
||||
def _release_grad_chunk_cb():
|
||||
grad_chunk.wait_async_reduce()
|
||||
GeminiDDP.release_grad_chunk_handle(
|
||||
chunk_manager,
|
||||
grads_device,
|
||||
master_weights,
|
||||
enable_gradient_accumulation,
|
||||
p,
|
||||
chunk,
|
||||
grad_chunk,
|
||||
)
|
||||
with torch.cuda.stream(async_reduce_stream):
|
||||
chunk_manager.reduce_chunk(grad_chunk)
|
||||
|
||||
p._release_grad_chunk_cb = _release_grad_chunk_cb
|
||||
if not chunk_manager.reuse_fp16_chunk:
|
||||
if chunk.keep_gathered:
|
||||
chunk_manager.fake_release_chunk(chunk)
|
||||
else:
|
||||
chunk_manager.release_chunk(chunk)
|
||||
if grad_chunk.is_gathered:
|
||||
grad_chunk.cuda_global_chunk.div_(chunk.pg_size)
|
||||
if chunk.extra_dp_group is not None:
|
||||
grad_chunk.cuda_global_chunk.div_(chunk.extra_dp_size)
|
||||
else:
|
||||
GeminiDDP.release_grad_chunk_handle(
|
||||
chunk_manager, grads_device, master_weights, enable_gradient_accumulation, p, chunk, grad_chunk
|
||||
)
|
||||
return empty_grad
|
||||
|
||||
@staticmethod
|
||||
def release_grad_chunk_handle(
|
||||
chunk_manager, grads_device, master_weights, enable_gradient_accumulation, p, chunk, grad_chunk
|
||||
):
|
||||
if not chunk_manager.reuse_fp16_chunk:
|
||||
if chunk.keep_gathered:
|
||||
chunk_manager.fake_release_chunk(chunk)
|
||||
else:
|
||||
chunk_manager.release_chunk(chunk)
|
||||
if grad_chunk.is_gathered:
|
||||
grad_chunk.cuda_global_chunk.div_(chunk.pg_size)
|
||||
if chunk.extra_dp_group is not None:
|
||||
grad_chunk.cuda_global_chunk.div_(chunk.extra_dp_size)
|
||||
else:
|
||||
grad_chunk.cuda_shard.div_(chunk.pg_size)
|
||||
if chunk.extra_dp_group is not None:
|
||||
grad_chunk.cuda_shard.div_(chunk.extra_dp_size)
|
||||
# check overflow elements
|
||||
chunk_manager.overflow_counter += grad_chunk.has_inf_or_nan
|
||||
# record l2 norm for gradient clipping. flag is bound to fp16 chunk
|
||||
if chunk.l2_norm_flag:
|
||||
grad_chunk.set_l2_norm()
|
||||
chunk_manager.move_chunk(grad_chunk, grads_device[p], force_copy=True)
|
||||
if not (master_weights) or (enable_gradient_accumulation):
|
||||
chunk_manager.move_chunk(chunk, grads_device[p], force_copy=True)
|
||||
grad_chunk.cuda_shard.div_(chunk.pg_size)
|
||||
if chunk.extra_dp_group is not None:
|
||||
grad_chunk.cuda_shard.div_(chunk.extra_dp_size)
|
||||
# check overflow elements
|
||||
chunk_manager.overflow_counter += grad_chunk.has_inf_or_nan
|
||||
# record l2 norm for gradient clipping. flag is bound to fp16 chunk
|
||||
if chunk.l2_norm_flag:
|
||||
grad_chunk.set_l2_norm()
|
||||
chunk_manager.move_chunk(grad_chunk, grads_device[p], force_copy=True)
|
||||
if not (master_weights) or (enable_gradient_accumulation):
|
||||
chunk_manager.move_chunk(chunk, grads_device[p], force_copy=True)
|
||||
|
||||
def zero_grad(self, set_to_none: bool = False) -> None:
|
||||
self.module.zero_grad(set_to_none=True)
|
||||
|
|
Loading…
Reference in New Issue