From b397104438581ecd72c9fcc0ab25121a243fb90a Mon Sep 17 00:00:00 2001 From: Yuanchen <70520919+chengeharrison@users.noreply.github.com> Date: Thu, 7 Dec 2023 14:02:03 +0800 Subject: [PATCH] [Colossal-Llama-2] Add finetuning Colossal-Llama-2 example (#4878) * Add finetuning Colossal-Llama-2 example * Add finetuning Colossal-Llama-2 example 2 * Add finetuning Colossal-Llama-2 example and support NEFTuning * Add inference example and refine neftune * Modify readme file * update the imports --------- Co-authored-by: Xu Yuanchen Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> --- applications/Colossal-LLaMA-2/README.md | 90 +++- .../colossal_llama2/dataset/conversation.py | 96 +++++ .../dataset/spliced_and_tokenized_dataset.py | 135 +++++- .../colossal_llama2/utils/neftune_patch.py | 69 +++ .../Colossal-LLaMA-2/inference_example.py | 57 +++ .../prepare_pretrain_dataset.py | 12 +- .../Colossal-LLaMA-2/prepare_sft_dataset.py | 147 +++++++ .../Colossal-LLaMA-2/train_sft.example.sh | 46 ++ applications/Colossal-LLaMA-2/train_sft.py | 403 ++++++++++++++++++ 9 files changed, 1036 insertions(+), 19 deletions(-) create mode 100644 applications/Colossal-LLaMA-2/colossal_llama2/dataset/conversation.py create mode 100644 applications/Colossal-LLaMA-2/colossal_llama2/utils/neftune_patch.py create mode 100644 applications/Colossal-LLaMA-2/inference_example.py create mode 100644 applications/Colossal-LLaMA-2/prepare_sft_dataset.py create mode 100755 applications/Colossal-LLaMA-2/train_sft.example.sh create mode 100644 applications/Colossal-LLaMA-2/train_sft.py diff --git a/applications/Colossal-LLaMA-2/README.md b/applications/Colossal-LLaMA-2/README.md index 1d44c5e76..03793bff4 100644 --- a/applications/Colossal-LLaMA-2/README.md +++ b/applications/Colossal-LLaMA-2/README.md @@ -11,7 +11,10 @@ - [Performance Evaluation](#performance-evaluation) - [Examples](#examples) - [Training Logs](#training-logs) - - [Import from Transformers (Inference)](#import-from-transformers-inference) + - [Inference](#inference) + - [Import from HuggingFace](#import-from-huggingface) + - [Import from Modelscope](#import-from-modelscope) + - [Quick Start](#quick-start) - [Usage](#usage) - [Install](#install) - [0. Pre-requisite](#0-pre-requisite) @@ -21,8 +24,14 @@ - [1. Init Tokenizer Preparation](#1-init-tokenizer-preparation) - [2. Init Model Preparation](#2-init-model-preparation) - [3. Data Preparation](#3-data-preparation) + - [3.1 Data for Pretraining](#31-data-for-pretraining) + - [3.2 Data for Supervised Fine-tuning](#32-data-for-supervised-fine-tuning) - [4. Command Line Arguments for Training](#4-command-line-arguments-for-training) + - [4.1 Arguments for Pretraining](#41-arguments-for-pretraining) + - [4.2 Arguments for Supervised Fine-tuning](#42-arguments-for-supervised-fine-tuning) - [5. Running Command](#5-running-command) + - [5.1 Command for Pretraining](#51-command-for-pretraining) + - [5.2 Command for Supervised Fine-tuning](#52-command-for-supervised-fine-tuning) - [Technical Insights](#technical-insights) - [Data](#data) - [Tokenizer](#tokenizer) @@ -117,7 +126,8 @@ We also recorded the training logs for the experiment

-### Import from Transformers (Inference) +### Inference +#### Import from HuggingFace To load Colossal-LLaMA-2-7B-base model using Transformers, use the following code: ```Python from transformers import AutoModelForCausalLM, AutoTokenizer @@ -135,14 +145,15 @@ pred = model.generate(**inputs, print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)[len(input):]) ``` +#### Import from Modelscope You can also load our model using modelscope, use the following code: ```Python from modelscope import AutoModelForCausalLM, AutoTokenizer, snapshot_download model_dir = snapshot_download('colossalai/Colossal-LLaMA-2-7b-base', revision='v1.0.1') tokenizer = AutoTokenizer.from_pretrained(model_dir, device_map="auto", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True).eval() -generation_kwargs = {"max_new_tokens": 256, - "top_p": 0.95, +generation_kwargs = {"max_new_tokens": 256, + "top_p": 0.95, "temperature": 0.3 } input = '离离原上草,' @@ -153,6 +164,30 @@ print(tokenizer.decode(output.cpu()[0], skip_special_tokens=True)[len(input):]) ``` You can download model weights from [🤗HuggingFace](https://huggingface.co/hpcai-tech/Colossal-LLaMA-2-7b-base) or [👾Modelscope](https://modelscope.cn/models/colossalai/Colossal-LLaMA-2-7b-base/summary). +#### Quick Start +You can run [`inference_example.py`](inference_example.py) to quickly start the inference of our base model by loading model weights from HF. + +Command to run the script: +```bash +python inference_example.py \ + --model_path "" \ + --device "cuda:0" \ + --max_new_tokens 512 \ + --do_sample True \ + --temperature 0.3 \ + --top_k 50 \ + --top_p 0.95 \ + --input_txt "YOUR_PROMPT_OR_QUESTION" +``` +Here is details about CLI arguments: +* Model path: `--model_path`. HF repo name or local path of the model. +* Device: `--device`. Set the device. +* Max new tokens: `--max_new_tokens`. Set maximum numbers of tokens to generate, ignoring the number of tokens in the prompt. +* Do sample: `--do_sample`. Set whether or not to use sampling. +* Temperature: `--temperature`. Set temperature value. +* Top_k: `--top_k`. Set top_k value for top-k-filtering. +* Top_p: `--top_p`. Set top_p value for generation. +* Input_txt: `--input_txt`. The prompt string input to the model. ## Usage ### Install @@ -218,6 +253,8 @@ Here is details about CLI arguments: ❗️**Important**: Once you initialize the new model checkpoint, copy your new tokenizer files (`special_tokens_map.json`, `tokenizer.model` and `tokenizer_config.json`) to your new model folder. #### 3. Data Preparation + +##### 3.1 Data for Pretraining Raw data should be formatted as `jsonl` format. Each data point should have the following fields: * `source` (str, compulsory): This part is ignored when calculating loss. Default can be empty. * `target` (str, compulsory): Loss will be calculated. @@ -250,7 +287,31 @@ Here is details about CLI arguments: * Max length: `max_length`. Max length of spliced samples. Default value is 4096. * Number of bins for each category: `num_spliced_dataset_bins`. Number of bins for each category, used for bucket-based training. +##### 3.2 Data for Supervised Fine-tuning +We prepare data for supervised fine-tuning in a similar way. The main difference lies in the data format. Each data point should have the following field: +* `messages` (list, compulsory): This part consists of a conversation between a human and assistant. The length of `messages` can vary and only content from `assistant` is used for calculating loss. + +Examples: +```JSON +{"messages": [{"from": "human", "content": "What are the three primary colors?"}, {"from": "assistant", "content": "The three primary colors are red, blue, and yellow."}]} +{"messages": [{"from": "human", "content": "解释个人电脑和服务器之间的区别。"}, {"from": "assistant", "content": "个人电脑和服务器是两种不同类型的计算机系统,它们的主要区别在于用途、硬件配置和性能。 个人电脑,顾名思义,是为个人使用而设计的计算机。它们通常用于日常的工作、娱乐和学习,可以运行各种各样的应用程序和游戏。个人电脑的硬件配置一般是按照标准配置来设计的,不过也可以根据个人需求进行定制。 而服务器是为了满足大量用户的需求而设计的计算机系统,它们通常用于为用户提供各种网络服务,如网站、电子邮件和文件传输等。服务器通常需要高性能的硬件配置,并且可以承受高负载和长时间的运行。由于服务器需要支持大量用户的访问,它们通常配备多核处理器、大容量内存和大容量硬盘驱动器,以提高系统的运行速度和稳定性。 总之,个人电脑和服务器之间的主要区别在于它们的用途、硬件配置和性能。个人电脑用于个人使用,而服务器用于支持大量用户的访问。服务器的硬件配置通常比个人电脑更高,以保证系统的性能和稳定性。"}]} +``` + +Command to convert jsonl dataset to arrow format is similar to the command in [3.1 Data for Pretraining](#31-data-for-pretraining). In `prepare_sft_dataset.py`, we don't concatenate different data samples. +``` +python prepare_sft_dataset.py.py \ + --data_input_dirs ",," \ + --tokenizer_dir "" \ + --data_cache_dir "jsonl_to_arrow_cache" \ + --data_jsonl_output_dir "spliced_tokenized_output_jsonl" \ + --data_arrow_output_dir "spliced_tokenized_output_arrow" \ + --max_length 4096 \ + --num_spliced_dataset_bins 10 +``` + #### 4. Command Line Arguments for Training + +##### 4.1 Arguments for Pretraining You can use `colossalai run` to launch multi-nodes training: ```bash colossalai run --nproc_per_node YOUR_GPU_PER_NODE --hostfile YOUR_HOST_FILE \ @@ -288,7 +349,16 @@ Here is details about CLI arguments: * Tensor parallelism size: `--tp`. TP size for 3d Parallelism. The default value is 1. * Zero stage: `--zero`. Zero stage for 3d Parallelism. The default value is 1. +##### 4.2 Arguments for Supervised Fine-tuning +We add support for gradient accumulation and NEFTuning for supervised fine-tuning and thus there are two more arguments apart from the arguments listed in [4.1 Arguments for Pretraining](#41-arguments-for-pretraining). + +Here is details about CLI arguments: +* Accumulation steps: `--accumulation_steps`. The default value is `8`. +* NEFTuning: `--use_neft`. The default value is `False`. It can help improve the performance of chat models. + #### 5. Running Command + +##### 5.1 Command for Pretraining An [example bash](train.example.sh) is also provided for the experiment. Here is the steps to run the experiment: * Create your own hostfile: `cp hostfile.example hostfile`. * Create your own bash: `cp train.example.sh train.sh`. @@ -310,6 +380,10 @@ declare -a dataset=( "/part-00000" ) ``` + +##### 5.2 Command for Supervised Fine-tuning +An [example bash](train_sft.example.sh) is provided. The only difference with the command for pretraining is the two arguments (`--accumulation_steps` and `--use_neft`) in the script. You can refer to [4.2 Arguments for Supervised Fine-tuning](#42-arguments-for-supervised-fine-tuning) for more details. + ## Technical Insights In order to enhance LLaMA-2's capabilities for understanding and generating Chinese content, The [Colossal-AI](https://github.com/hpcaitech/ColossalAI) team proposes the continuation of pre-training the LLaMA-2 model using both Chinese and English corpora. The overall pipeline can be described as follows: @@ -416,3 +490,11 @@ Applying the above process to perform knowledge transfer in any field allows for year={2023} } ``` +```bibtex +@article{jain2023neftune, + title={NEFTune: Noisy Embeddings Improve Instruction Finetuning}, + author={Jain, Neel and Chiang, Ping-yeh and Wen, Yuxin and Kirchenbauer, John and Chu, Hong-Min and Somepalli, Gowthami and Bartoldson, Brian R and Kailkhura, Bhavya and Schwarzschild, Avi and Saha, Aniruddha and others}, + journal={arXiv preprint arXiv:2310.05914}, + year={2023} +} +``` diff --git a/applications/Colossal-LLaMA-2/colossal_llama2/dataset/conversation.py b/applications/Colossal-LLaMA-2/colossal_llama2/dataset/conversation.py new file mode 100644 index 000000000..be27ff7bc --- /dev/null +++ b/applications/Colossal-LLaMA-2/colossal_llama2/dataset/conversation.py @@ -0,0 +1,96 @@ +# Copyright 2023 lm-sys@FastChat +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import dataclasses +from enum import Enum, auto +from typing import List + + +class SeparatorStyle(Enum): + ADD_BOS_EOS_TOKEN = auto() + + +@dataclasses.dataclass +class Conversation: + system: str + roles: List[str] + messages: List[List[str]] + offset: int + sep_style: SeparatorStyle + seps: List[str] + + def clear(self): + self.messages = [] + + def get_prompt(self, length: int = None): + if length is None: + length = len(self.messages) + + if self.sep_style == SeparatorStyle.ADD_BOS_EOS_TOKEN: + ret = self.system + for role, message in self.messages[0:length]: + if message: + ret += role + ": " + self.seps[0] + message + self.seps[1] + else: + ret += role + ": " + self.seps[0] + return ret + else: + raise ValueError(f"Invalid style: {self.sep_style}") + + def save_prompt(self): + if self.sep_style == SeparatorStyle.ADD_BOS_EOS_TOKEN: + ret = self.system + for role, message in self.messages: + if message: + ret += role + ": " + self.seps[0] + message + self.seps[1] + "\n" + else: + ret += role + ": " + self.seps[0] + return ret + else: + raise ValueError(f"Invalid style: {self.sep_style}") + + def append_message(self, role, message): + self.messages.append([role, message]) + + def copy(self): + return Conversation( + system=self.system, + roles=self.roles, + messages=[[x, y] for x, y in self.messages], + offset=self.offset, + sep_style=self.sep_style, + seps=self.seps, + ) + + def dict(self): + return { + "system": self.system, + "roles": self.roles, + "messages": self.messages, + "offset": self.offset, + "seps": self.seps, + } + + +conv = Conversation( + system="A chat between a curious human and an artificial intelligence assistant. " + "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", + roles=("Human", "Assistant"), + messages=[], + offset=0, + sep_style=SeparatorStyle.ADD_BOS_EOS_TOKEN, + seps=["", ""], +) + +default_conversation = conv diff --git a/applications/Colossal-LLaMA-2/colossal_llama2/dataset/spliced_and_tokenized_dataset.py b/applications/Colossal-LLaMA-2/colossal_llama2/dataset/spliced_and_tokenized_dataset.py index 0c21f325a..8314941ba 100644 --- a/applications/Colossal-LLaMA-2/colossal_llama2/dataset/spliced_and_tokenized_dataset.py +++ b/applications/Colossal-LLaMA-2/colossal_llama2/dataset/spliced_and_tokenized_dataset.py @@ -4,22 +4,29 @@ Splicing multiple pre-tokenized sequence data points """ +import bisect import random import warnings from copy import deepcopy -from datasets import dataset_dict -from typing import Any, Callable, Dict, Iterable, List, Union, Tuple +from typing import Any, Callable, Dict, Iterable, List, Tuple, Union +from datasets import dataset_dict from torch.utils.data import ConcatDataset, Dataset, IterableDataset from transformers.models.llama.tokenization_llama import LlamaTokenizer from transformers.tokenization_utils import PreTrainedTokenizer +from colossalai.logging import get_dist_logger + +from .conversation import Conversation, default_conversation + +logger = get_dist_logger() + IGNORE_INDEX = -100 DSType = Union[Dataset, ConcatDataset, dataset_dict.Dataset] -def supervised_tokenize( +def supervised_tokenize_pretrain( data_point: Dict[str, str], tokenizer: LlamaTokenizer, ignore_index: int = None, max_length: int = 4096 ) -> Dict[str, Union[int, str, List[int]]]: """ @@ -62,6 +69,121 @@ def supervised_tokenize( ) +def supervised_tokenize_sft( + data_point: Dict[str, str], + tokenizer: LlamaTokenizer, + conversation_template: Conversation = default_conversation, + ignore_index: int = None, + max_length: int = 4096, +) -> Dict[str, Union[int, str, List[int]]]: + """ + A tokenization function to tokenize an original supervised data point as following: + {"messages": [{"from": "human", "content": "xxx"}, {"from": "assistant", "content": "xxx"}]} + """ + assert tokenizer.add_bos_token is False and tokenizer.add_eos_token is False, ( + "Initially set `tokenizer.add_bos_token` and `tokenizer.add_eos_token` to False, " + "add and manually later" + ) + + assert ( + tokenizer.bos_token == conversation_template.seps[0] and tokenizer.eos_token == conversation_template.seps[1] + ), "`bos_token` and `eos_token` should be the same with `conversation_template.seps`." + + if ignore_index is None: + ignore_index = IGNORE_INDEX + + messages = data_point["messages"] + template = deepcopy(conversation_template) + template.messages = [] + + for mess in messages: + from_str = mess["from"] + if from_str.lower() == "human": + from_str = template.roles[0] + elif from_str.lower() == "assistant": + from_str = template.roles[1] + else: + raise ValueError(f"Unsupported role {from_str.lower()}") + + template.append_message(from_str, mess["content"]) + + if len(template.messages) % 2 != 0: + template.messages = template.messages[0:-1] + + # `target_turn_index` is the number of turns which exceeds `max_length - 1` for the first time. + turns = [i for i in range(1, len(messages) // 2 + 1)] + target_turn_index = bisect.bisect_right( + turns, + max_length - 1, + key=lambda x: len(tokenizer([template.get_prompt(2 * x)], add_special_tokens=False)["input_ids"][0]), + ) + + # The tokenized length for first turn already exceeds `max_length - 1`. + if target_turn_index - 1 < 0: + return dict( + input_ids=None, + labels=None, + inputs_decode=None, + labels_decode=None, + seq_length=None, + seq_category=None, + ) + + target_turn = turns[target_turn_index - 1] + prompt = template.get_prompt(2 * target_turn) + tokenized = tokenizer([prompt], add_special_tokens=False)["input_ids"][0] + + template.messages = template.messages[0 : 2 * target_turn] + + starts = [] + ends = [] + gpt_bos = False if template.messages[0][0] == template.roles[0] else True + gpt_eos = False if template.messages[0][0] == template.roles[0] else True + + for i, token_id in enumerate(tokenized): + if token_id == tokenizer.bos_token_id: + if gpt_bos: + starts.append(i) + gpt_bos = not gpt_bos + elif token_id == tokenizer.eos_token_id: + if gpt_eos: + ends.append(i) + gpt_eos = not gpt_eos + + if len(starts) != target_turn or len(ends) != target_turn: + logger.info( + "Please check whether the tokenizer add additional `bos_token` and `eos_token`.\n\nOr the original message contains `bos_token` or `eos_token`." + ) + return dict( + input_ids=None, + labels=None, + inputs_decode=None, + labels_decode=None, + seq_length=None, + seq_category=None, + ) + + tokenized = [tokenizer.bos_token_id] + tokenized + labels = [ignore_index] * len(tokenized) + for start, end in zip(starts, ends): + labels[start + 1 : end + 2] = tokenized[start + 1 : end + 2] + + labels_decode = deepcopy(labels) + for i, z in enumerate(labels_decode): + if z == ignore_index: + labels_decode[i] = tokenizer.unk_token_id + + # `inputs_decode` and `labels_decode` can be used to check whether the tokenization method is true. + return dict( + input_ids=tokenized, + labels=labels, + inputs_decode=tokenizer.decode(tokenized), + labels_decode=tokenizer.decode(labels_decode), + seq_length=len(tokenized), + seq_category=data_point["category"] if "category" in data_point else "None", + ) + + class ClosedToConstantLengthSplicedDataset(IterableDataset): """ Define an iterable dataset that returns a (close to) constant length data point spliced from multiple @@ -169,12 +291,7 @@ class ClosedToConstantLengthSplicedDataset(IterableDataset): spliced_labels.extend(seq_labels) # For residual spliced data point at the end of the data set if self.infinite is False and more_data_points is False and len(spliced_input_ids) > 0: - examples.append( - { - self.input_ids_field: spliced_input_ids, - self.labels_field: spliced_labels - } - ) + examples.append({self.input_ids_field: spliced_input_ids, self.labels_field: spliced_labels}) if self.shuffle: random.shuffle(examples) for spliced_data_point in examples: diff --git a/applications/Colossal-LLaMA-2/colossal_llama2/utils/neftune_patch.py b/applications/Colossal-LLaMA-2/colossal_llama2/utils/neftune_patch.py new file mode 100644 index 000000000..079faaace --- /dev/null +++ b/applications/Colossal-LLaMA-2/colossal_llama2/utils/neftune_patch.py @@ -0,0 +1,69 @@ +# Copyright 2023 The Hugging Face team +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch + + +def unwrap(model): + return model.unwrap().module + + +def neftune_post_forward_hook(module, input, output): + """ + Implements the NEFTune forward pass for the model using forward hooks. Note this works only for torch.nn.Embedding + layers. This method is slightly adapted from the original source code that can be found here: + https://github.com/neelsjain/NEFTune Simply add it to your model as follows: + ```python + model = ... + model.embed_tokens.neftune_noise_alpha = 0.1 + model.embed_tokens.register_forward_hook(neftune_post_forward_hook) + ``` + Args: + module (`torch.nn.Module`): + The embedding module where the hook is attached. Note that you need to set `module.neftune_noise_alpha` to + the desired noise alpha value. + input (`torch.Tensor`): + The input tensor to the model. + output (`torch.Tensor`): + The output tensor of the model (i.e. the embeddings). + """ + if module.training: + dims = torch.tensor(output.size(1) * output.size(2)) + mag_norm = module.neftune_noise_alpha / torch.sqrt(dims) + output = output + torch.zeros_like(output).uniform_(-mag_norm, mag_norm) + return output + + +def activate_neftune(model, neftune_noise_alpha=0.1): + r""" + Activates the neftune as presented in this code: https://github.com/neelsjain/NEFTune and paper: + https://arxiv.org/abs/2310.05914 + """ + embeddings = unwrap(model).get_input_embeddings() + + embeddings.neftune_noise_alpha = neftune_noise_alpha + hook_handle = embeddings.register_forward_hook(neftune_post_forward_hook) + neftune_hook_handle = hook_handle + + return model, neftune_hook_handle + + +def deactivate_neftune(model, neftune_hook_handle): + """ + Deactivates the neftune method. Make sure to call `_activate_neftune` first. + """ + embeddings = unwrap(model).get_input_embeddings() + + neftune_hook_handle.remove() + del embeddings.neftune_noise_alpha diff --git a/applications/Colossal-LLaMA-2/inference_example.py b/applications/Colossal-LLaMA-2/inference_example.py new file mode 100644 index 000000000..7fe2d92ab --- /dev/null +++ b/applications/Colossal-LLaMA-2/inference_example.py @@ -0,0 +1,57 @@ +import argparse +import os + +import torch +from colossalai.logging import get_dist_logger +from transformers import AutoTokenizer, AutoModelForCausalLM + +logger = get_dist_logger() + + +def load_model(model_path, device="cuda", **kwargs): + logger.info( + "Please check whether the tokenizer and model weights are properly stored in the same folder." + ) + model = AutoModelForCausalLM.from_pretrained(model_path, **kwargs) + model.to(device) + + try: + tokenizer = AutoTokenizer.from_pretrained(model_path) + except OSError: + raise ImportError("Tokenizer not found. Please check if the tokenizer exists or the model path is correct.") + + return model, tokenizer + + +@torch.inference_mode() +def generate(args): + model, tokenizer = load_model(model_path=args.model_path, device=args.device) + + BASE_INFERENCE_SUFFIX = "\n\n->\n\n" + input_txt = f"{args.input_txt}{BASE_INFERENCE_SUFFIX}" + + inputs = tokenizer(args.input_txt, return_tensors='pt').to(args.device) + output = model.generate(**inputs, + max_new_tokens=args.max_new_tokens, + do_sample=args.do_sample, + temperature=args.temperature, + top_k=args.top_k, + top_p=args.top_p, + num_return_sequences=1) + response = tokenizer.decode(output.cpu()[0], skip_special_tokens=True)[len(input_txt):] + logger.info(f"Question: {input_txt} \n\n Answer: \n{response}") + return response + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Colossal-LLaMA-2 inference Process.") + parser.add_argument('--model_path', type=str, default="hpcai-tech/Colossal-LLaMA-2-7b-base", help="HF repo name or local path of the model") + parser.add_argument('--device', type=str, default="cuda:0", help="Set the device") + parser.add_argument('--max_new_tokens', type=int, default=512, help=" Set maximum numbers of tokens to generate, ignoring the number of tokens in the prompt") + parser.add_argument('--do_sample', type=bool, default=True, help="Set whether or not to use sampling") + parser.add_argument('--temperature', type=float, default=0.3, help="Set temperature value") + parser.add_argument('--top_k', type=int, default=50, help="Set top_k value for top-k-filtering") + parser.add_argument('--top_p', type=int, default=0.95, help="Set top_p value for generation") + parser.add_argument('--input_txt', type=str, default="明月松间照,", help="The prompt input to the model") + args = parser.parse_args() + generate(args) \ No newline at end of file diff --git a/applications/Colossal-LLaMA-2/prepare_pretrain_dataset.py b/applications/Colossal-LLaMA-2/prepare_pretrain_dataset.py index a519232f6..cb578b5f6 100644 --- a/applications/Colossal-LLaMA-2/prepare_pretrain_dataset.py +++ b/applications/Colossal-LLaMA-2/prepare_pretrain_dataset.py @@ -11,14 +11,14 @@ import os import time from multiprocessing import cpu_count +from colossal_llama2.dataset.spliced_and_tokenized_dataset import ( + ClosedToConstantLengthSplicedDataset, + supervised_tokenize_pretrain, +) from datasets import dataset_dict, load_dataset from transformers.models.llama.tokenization_llama import LlamaTokenizer from colossalai.logging import get_dist_logger -from colossal_llama2.dataset.spliced_and_tokenized_dataset import ( - supervised_tokenize, - ClosedToConstantLengthSplicedDataset, -) logger = get_dist_logger() @@ -104,7 +104,7 @@ def main(): assert isinstance(dataset, dataset_dict.Dataset) logger.info(f"Start to process part-{index}/{len(list_dataset)} of all original datasets.") dataset = dataset.map( - function=supervised_tokenize, + function=supervised_tokenize_pretrain, fn_kwargs={"tokenizer": tokenizer, "max_length": args.max_length}, keep_in_memory=False, num_proc=min(len(dataset), cpu_count()), @@ -149,5 +149,5 @@ def main(): spliced_dataset.save_to_disk(dataset_path=output_arrow_path, num_proc=min(len(spliced_dataset), cpu_count())) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/applications/Colossal-LLaMA-2/prepare_sft_dataset.py b/applications/Colossal-LLaMA-2/prepare_sft_dataset.py new file mode 100644 index 000000000..6d19cbd72 --- /dev/null +++ b/applications/Colossal-LLaMA-2/prepare_sft_dataset.py @@ -0,0 +1,147 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Prepare sft dataset for fine-tuning +""" + +import argparse +import json +import math +import os +from multiprocessing import cpu_count + +from colossal_llama2.dataset.conversation import default_conversation +from colossal_llama2.dataset.spliced_and_tokenized_dataset import supervised_tokenize_sft +from datasets import dataset_dict, load_dataset +from transformers.models.llama.tokenization_llama import LlamaTokenizer + +from colossalai.logging import get_dist_logger + +logger = get_dist_logger() + + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--data_input_dirs", + type=str, + required=True, + default=None, + help="Comma(i.e., ',') separated list of all data directories containing `.jsonl` data files.", + ) + parser.add_argument( + "--tokenizer_dir", type=str, required=True, default=None, help="A directory containing the tokenizer" + ) + parser.add_argument("--data_cache_dir", type=str, default="cache", help="Data cache directory") + parser.add_argument( + "--data_jsonl_output_dir", + type=str, + default="jsonl_output", + help="Output directory of spliced dataset with jsonl format", + ) + parser.add_argument( + "--data_arrow_output_dir", + type=str, + default="arrow_output", + help="Output directory of spliced dataset with arrow format", + ) + parser.add_argument("--max_length", type=int, default=4096, help="Max length of each spliced tokenized sequence") + parser.add_argument("--num_spliced_dataset_bins", type=int, default=10, help="Number of spliced dataset bins") + args = parser.parse_args() + + if args.num_spliced_dataset_bins >= 100000: + raise ValueError("Too many spliced divisions, must be smaller than 100000") + + assert not os.path.exists(args.data_cache_dir), f"Find existed data cache dir {args.data_cache_dir}" + assert not os.path.exists( + args.data_jsonl_output_dir + ), f"Find existed jsonl data output dir {args.data_jsonl_output_dir}" + assert not os.path.exists( + args.data_arrow_output_dir + ), f"Find existed arrow data output dir {args.data_arrow_output_dir}" + os.makedirs(args.data_jsonl_output_dir) + os.makedirs(args.data_arrow_output_dir) + + # Prepare to all input datasets + input_data_paths = [] + input_data_dirs = args.data_input_dirs.split(",") + for ds_dir in input_data_dirs: + ds_dir = os.path.abspath(ds_dir) + assert os.path.exists(ds_dir), f"Not find data dir {ds_dir}" + ds_files = [name for name in os.listdir(ds_dir) if name.endswith(".jsonl")] + ds_paths = [os.path.join(ds_dir, name) for name in ds_files] + input_data_paths.extend(ds_paths) + + # Prepare to data splitting. + train_splits = [] + split_interval = math.ceil(100 / args.num_spliced_dataset_bins) + for i in range(0, 100, split_interval): + start = i + end = i + split_interval + if end > 100: + end = 100 + train_splits.append(f"train[{start}%:{end}%]") + + # Prepare to the tokenizer. + tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_dir) + tokenizer.add_bos_token = False + tokenizer.add_eos_token = False + if tokenizer.pad_token is None: + tokenizer.pad_token = tokenizer.unk_token + + list_dataset = load_dataset( + path="json", + data_files=input_data_paths, + cache_dir=os.path.join(args.data_cache_dir, "raw"), + keep_in_memory=False, + split=train_splits, + num_proc=cpu_count(), + ) + for index, dataset in enumerate(list_dataset): + assert isinstance(dataset, dataset_dict.Dataset) + logger.info(f"Start to process part-{index}/{len(list_dataset)} of all original datasets.") + dataset = dataset.map( + function=supervised_tokenize_sft, + fn_kwargs={ + "tokenizer": tokenizer, + "conversation_template": default_conversation, + "max_length": args.max_length, + }, + keep_in_memory=False, + num_proc=min(len(dataset), cpu_count()), + ) + + dataset = dataset.filter(lambda data: data["labels"] is not None) + dataset = dataset.sort(column_names=("seq_category", "seq_length"), reverse=False, keep_in_memory=False) + + # We don't concatenate data samples here. + spliced_dataset = dataset + # Save each jsonl spliced dataset. + output_index = "0" * (5 - len(str(index))) + str(index) + output_name = f"part-{output_index}" + output_jsonl_path = os.path.join(args.data_jsonl_output_dir, output_name + ".jsonl") + # st = time.time() + with open(file=output_jsonl_path, mode="w", encoding="utf-8") as fp_writer: + spliced_count = 0 + for spliced_data_point in spliced_dataset: + if spliced_count % 500 == 0: + logger.info(f"processing {spliced_count} spliced data points for {fp_writer.name}") + spliced_count += 1 + fp_writer.write(json.dumps(spliced_data_point, ensure_ascii=False) + "\n") + + # Save each arrow spliced dataset + output_arrow_path = os.path.join(args.data_arrow_output_dir, output_name) + logger.info(f"Start to save {output_arrow_path}") + spliced_dataset = load_dataset( + path="json", + data_files=[output_jsonl_path], + cache_dir=os.path.join(args.data_cache_dir, "spliced_and_tokenized"), + keep_in_memory=False, + num_proc=cpu_count(), + split="train", + ) + spliced_dataset.save_to_disk(dataset_path=output_arrow_path, num_proc=min(len(spliced_dataset), cpu_count())) + + +if __name__ == "__main__": + main() diff --git a/applications/Colossal-LLaMA-2/train_sft.example.sh b/applications/Colossal-LLaMA-2/train_sft.example.sh new file mode 100755 index 000000000..dcb11515d --- /dev/null +++ b/applications/Colossal-LLaMA-2/train_sft.example.sh @@ -0,0 +1,46 @@ +#!/bin/bash + +# NCCL IB environment variables +export NCCL_IB_HCA=mlx5_1:1,mlx5_2:1,mlx5_3:1,mlx5_4:1 +export NCCL_IB_DISABLE=0 +export NCCL_SOCKET_IFNAME=eth0 +export NCCL_IB_GID_INDEX=3 +export NCCL_IB_TIMEOUT=23 +export NCCL_IB_RETRY_CNT=7 +export OMP_NUM_THREADS=8 + +PROJECT_NAME="" +PARENT_SAVE_DIR="" +PARENT_TENSORBOARD_DIR="" +PARENT_CONFIG_FILE="" +PRETRAINED_MODEL_PATH="" + +declare -a dataset=( + "PATH TO THE DATASET" +) + +TIMESTAMP=$(date +%Y-%m-%d-%H-%M-%S) +FULL_PROJECT_NAME="${PROJECT_NAME}-${TIMESTAMP}" +SAVE_DIR="${PARENT_SAVE_DIR}${FULL_PROJECT_NAME}" +TENSORBOARD_DIR="${PARENT_TENSORBOARD_DIR}${FULL_PROJECT_NAME}" +CONFIG_FILE="${PARENT_CONFIG_FILE}${FULL_PROJECT_NAME}.json" + +colossalai run --nproc_per_node 8 --hostfile hostfile --master_port 30013 train_sft.py \ + --pretrained $PRETRAINED_MODEL_PATH \ + --dataset ${dataset[@]} \ + --plugin "zero2" \ + --save_interval 400 \ + --save_dir $SAVE_DIR \ + --tensorboard_dir $TENSORBOARD_DIR \ + --config_file $CONFIG_FILE \ + --num_epochs 1 \ + --accumulation_steps 8 \ + --micro_batch_size 8 \ + --lr 5e-5 \ + --mixed_precision "bf16" \ + --grad_clip 1.0 \ + --weight_decay 0.01 \ + --warmup_steps 100 \ + --use_grad_checkpoint \ + --use_flash_attn \ + --use_neft \ diff --git a/applications/Colossal-LLaMA-2/train_sft.py b/applications/Colossal-LLaMA-2/train_sft.py new file mode 100644 index 000000000..fd9e1cd3e --- /dev/null +++ b/applications/Colossal-LLaMA-2/train_sft.py @@ -0,0 +1,403 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Supervised fine-tuning of Colossal-LLaMA-2-base developed by Colossal-AI Team +""" + +import argparse +import json +import os +import resource +from contextlib import nullcontext + +import torch +import torch.distributed as dist +from colossal_llama2.dataset.loader import ( + DataCollatorForSupervisedDataset, + StatefulDistributedSampler, + load_tokenized_dataset, + setup_distributed_dataloader, +) +from colossal_llama2.utils.ckpt_io import load_checkpoint, save_checkpoint +from colossal_llama2.utils.flash_attention_patch import replace_with_flash_attention +from colossal_llama2.utils.froze import freeze_non_embeds_parameters +from colossal_llama2.utils.neftune_patch import activate_neftune, deactivate_neftune +from torch.utils.tensorboard import SummaryWriter +from tqdm import tqdm +from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer + +import colossalai +from colossalai.booster import Booster +from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin +from colossalai.cluster import DistCoordinator +from colossalai.lazy import LazyInitContext +from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR +from colossalai.nn.optimizer import HybridAdam +from colossalai.utils import get_current_device + + +def get_model_numel(model: torch.nn.Module) -> int: + return sum(p.numel() for p in model.parameters()) + + +def format_numel_str(numel: int) -> str: + B = 1024**3 + M = 1024**2 + K = 1024 + if numel >= B: + return f"{numel / B:.2f} B" + elif numel >= M: + return f"{numel / M:.2f} M" + elif numel >= K: + return f"{numel / K:.2f} K" + else: + return f"{numel}" + + +def all_reduce_mean(tensor: torch.Tensor) -> torch.Tensor: + dist.all_reduce(tensor=tensor, op=dist.ReduceOp.SUM) + tensor.div_(dist.get_world_size()) + return tensor + + +def main() -> None: + # ============================== + # Parse Arguments + # ============================== + parser = argparse.ArgumentParser() + parser.add_argument( + "--pretrained", + type=str, + default=None, + help="Address of the pre-trained modeling", + ) + parser.add_argument("--dataset", nargs="+", default=[]) + parser.add_argument( + "--plugin", + type=str, + default="gemini", + choices=["gemini", "gemini_auto", "zero2", "zero2_cpu", "3d"], + help="Choose which plugin to use", + ) + parser.add_argument("--load_checkpoint", type=str, default=None, help="Load checkpoint") + parser.add_argument("--save_interval", type=int, default=1000, help="Save interval") + parser.add_argument("--save_dir", type=str, default="checkpoint_dir", help="Checkpoint directory") + parser.add_argument("--tensorboard_dir", type=str, default="logs_dir", help="Tensorboard directory") + parser.add_argument("--config_file", type=str, default="config_file", help="Config file") + parser.add_argument("--num_epochs", type=int, default=1, help="Number of training epochs") + parser.add_argument("--accumulation_steps", type=int, default=8, help="Number of accumulation steps") + parser.add_argument("--micro_batch_size", type=int, default=2, help="Batch size of each process") + parser.add_argument("--lr", type=float, default=3e-4, help="Learning rate") + parser.add_argument("--max_length", type=int, default=4096, help="Model max length") + parser.add_argument( + "--mixed_precision", + type=str, + default="fp16", + choices=["fp16", "bf16"], + help="Mixed precision", + ) + parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping value") + parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay") + parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps") + parser.add_argument( + "--use_grad_checkpoint", + action="store_true", + default=False, + help="Use gradient checkpointing", + ) + parser.add_argument( + "--use_flash_attn", + action="store_true", + default=False, + help="Use flash-attention", + ) + parser.add_argument( + "--use_neft", + action="store_true", + default=False, + help="Use NEFTune", + ) + parser.add_argument( + "--freeze_non_embeds_params", + action="store_true", + default=False, + help="Freeze non embeddings parameters", + ) + parser.add_argument("--tp", type=int, default=1) + parser.add_argument("--zero", type=int, default=1) + args = parser.parse_args() + + with open(args.config_file, "w") as f: + json.dump(args.__dict__, f, indent=4) + + # ============================== + # Initialize Distributed Training + # ============================== + colossalai.launch_from_torch({}) + coordinator = DistCoordinator() + + # ============================== + # Initialize Tensorboard + # ============================== + if coordinator.is_master(): + os.makedirs(args.tensorboard_dir, exist_ok=True) + writer = SummaryWriter(args.tensorboard_dir) + + # ============================== + # Initialize Booster + # ============================== + if args.plugin == "gemini": + plugin = GeminiPlugin( + precision=args.mixed_precision, + initial_scale=2**16, + max_norm=args.grad_clip, + ) + elif args.plugin == "gemini_auto": + plugin = GeminiPlugin( + precision=args.mixed_precision, + placement_policy="auto", + initial_scale=2**16, + max_norm=args.grad_clip, + ) + elif args.plugin == "zero2": + plugin = LowLevelZeroPlugin( + stage=2, + precision=args.mixed_precision, + initial_scale=2**16, + max_norm=args.grad_clip, + ) + elif args.plugin == "zero2_cpu": + plugin = LowLevelZeroPlugin( + stage=2, + precision=args.mixed_precision, + initial_scale=2**16, + cpu_offload=True, + max_norm=args.grad_clip, + ) + elif args.plugin == "3d": + plugin = HybridParallelPlugin( + tp_size=args.tp, + pp_size=1, + zero_stage=args.zero, + max_norm=args.grad_clip, + precision=args.mixed_precision, + ) + else: + raise ValueError(f"Unknown plugin {args.plugin}") + + booster = Booster(plugin=plugin) + + # ====================================================== + # Initialize Tokenizer, Dataset, Collator and Dataloader + # ====================================================== + tokenizer = LlamaTokenizer.from_pretrained(args.pretrained) + tokenizer.pad_token = tokenizer.eos_token + tokenizer.add_bos_token = False + tokenizer.add_eos_token = False + + coordinator.print_on_master(f"Configuration file will be saved at: {args.config_file}") + coordinator.print_on_master(f"Tensorboard logs will be saved at: {args.tensorboard_dir}") + coordinator.print_on_master(f"Model checkpoint will be saved at: {args.save_dir}") + + coordinator.print_on_master(f"Load dataset: {args.dataset}") + + dataset = load_tokenized_dataset(dataset_paths=args.dataset, mode="train") + data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer, max_length=args.max_length) + dataloader = setup_distributed_dataloader( + dataset=dataset, + batch_size=args.micro_batch_size, + shuffle=True, + drop_last=True, + collate_fn=data_collator, + ) + coordinator.print_on_master( + f"Max CUDA memory after data loader: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB" + ) + + # ====================================================== + # Initialize Model, Objective, Optimizer and LR Scheduler + # ====================================================== + init_ctx = ( + LazyInitContext(default_device=get_current_device()) if isinstance(plugin, (GeminiPlugin,)) else nullcontext() + ) + with init_ctx: + model = LlamaForCausalLM(LlamaConfig.from_pretrained(args.pretrained)) + # Freeze part of parameters. + if args.freeze_non_embeds_params: + freeze_non_embeds_parameters(model=model) + + if args.use_grad_checkpoint: + model.gradient_checkpointing_enable() + coordinator.print_on_master(msg="Gradient checkpointing enabled successfully") + if args.use_flash_attn: + replace_with_flash_attention(model=model) + coordinator.print_on_master(msg="Flash-attention enabled successfully") + + model_numel = get_model_numel(model) + coordinator.print_on_master(f"Model params: {format_numel_str(model_numel)}") + + optimizer = HybridAdam( + model_params=filter(lambda p: p.requires_grad, model.parameters()) + if args.freeze_non_embeds_params + else model.parameters(), + lr=args.lr, + betas=(0.9, 0.95), + weight_decay=args.weight_decay, + adamw_mode=True, + ) + + if args.warmup_steps is None: + args.warmup_steps = int(args.num_epochs * 0.025 * (len(dataloader) // args.accumulation_steps)) + coordinator.print_on_master(f"Warmup steps is set to {args.warmup_steps}") + + lr_scheduler = CosineAnnealingWarmupLR( + optimizer=optimizer, + total_steps=args.num_epochs * (len(dataloader) // args.accumulation_steps), + warmup_steps=args.warmup_steps, + eta_min=0.1 * args.lr, + ) + + # Flash attention will be disabled because it does NOT support fp32. + default_dtype = torch.float16 if args.mixed_precision == "fp16" else torch.bfloat16 + torch.set_default_dtype(default_dtype) + model, optimizer, _, dataloader, lr_scheduler = booster.boost( + model=model, + optimizer=optimizer, + lr_scheduler=lr_scheduler, + dataloader=dataloader, + ) + + torch.set_default_dtype(torch.float) + + if args.load_checkpoint is None: + coordinator.print_on_master(f"Load pretrained model checkpoint from {args.pretrained}") + booster.load_model(model, args.pretrained, strict=False) + + coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB") + coordinator.print_on_master( + f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB" + ) + + start_epoch = 0 + start_step = 0 + sampler_start_idx = 0 + if args.load_checkpoint is not None: + if "modeling" in args.load_checkpoint: + coordinator.print_on_master(f"Continued pretrain from checkpoint {args.load_checkpoint}") + booster.load_model(model, args.load_checkpoint) + else: + coordinator.print_on_master(f"Load model checkpoint from {args.load_checkpoint}") + start_epoch, start_step, sampler_start_idx = load_checkpoint( + load_dir=args.load_checkpoint, + booster=booster, + model=model, + optimizer=optimizer, + lr_scheduler=lr_scheduler, + ) + coordinator.print_on_master( + f"Loaded checkpoint {args.load_checkpoint} at epoch {start_epoch} step {start_step}" + ) + coordinator.print_on_master(f"Loaded sample at index {sampler_start_idx}") + + coordinator.print_on_master( + f"Checkpoint loaded max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded CUDA memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB" + ) + + if args.use_neft: + coordinator.print_on_master("Activate NEFTune.") + model, handle = activate_neftune(model) + + num_steps_per_epoch = len(dataloader) // args.accumulation_steps + # If resume training, set the sampler start index to the correct value + assert isinstance(dataloader.sampler, StatefulDistributedSampler) + dataloader.sampler.set_start_index(start_index=sampler_start_idx) + + for epoch in range(start_epoch, args.num_epochs): + dataloader.sampler.set_epoch(epoch=epoch) + pbar = tqdm(desc=f"Epoch {epoch}", disable=not coordinator.is_master(), total=num_steps_per_epoch) + total_loss = torch.tensor(0.0).to(torch.cuda.current_device()) + for step, batch in enumerate(dataloader): + batch = {k: v.to(get_current_device()) for k, v in batch.items() if isinstance(v, torch.Tensor)} + + batch_output = model(**batch) + + loss = batch_output.loss / args.accumulation_steps + total_loss += loss.item() + + booster.backward(loss=loss, optimizer=optimizer) + + if (step + 1) % args.accumulation_steps == 0: + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + + all_reduce_mean(tensor=total_loss) + pbar.set_postfix({"Loss": f"{total_loss.item():.4f}"}) + if coordinator.is_master(): + global_step = (epoch * num_steps_per_epoch) + (step + 1) // args.accumulation_steps + writer.add_scalar(tag="Loss", scalar_value=total_loss.item(), global_step=global_step) + writer.add_scalar( + tag="Learning Rate", + scalar_value=lr_scheduler.get_last_lr()[0], + global_step=global_step, + ) + total_loss.fill_(0.0) + pbar.update() + # Save modeling. + + if (args.save_interval > 0 and (step + 1) % (args.save_interval * args.accumulation_steps) == 0) or ( + step + 1 + ) == len(dataloader): + coordinator.print_on_master("\nStart saving model checkpoint with running states") + + if args.use_neft: + coordinator.print_on_master("Deactivate NEFTune before saving model.") + deactivate_neftune(model, handle) + + save_checkpoint( + save_dir=args.save_dir, + booster=booster, + model=model, + optimizer=optimizer, + lr_scheduler=lr_scheduler, + epoch=epoch, + step=step + 1, + batch_size=args.micro_batch_size, + coordinator=coordinator, + ) + coordinator.print_on_master( + f"Saved checkpoint at epoch {epoch} step {step + 1} at folder {args.save_dir}" + ) + + if args.use_neft: + coordinator.print_on_master("Activate NEFTune.") + model, handle = activate_neftune(model) + + # Delete CUDA cache. + # del batch, batch_labels, batch_output, loss + torch.cuda.empty_cache() + + # the continue epochs are not resumed, so we need to reset the sampler start index and start step + dataloader.sampler.set_start_index(start_index=0) + start_step = 0 + + if args.use_neft: + coordinator.print_on_master("Deactivate NEFTune.") + deactivate_neftune(model, handle) + + # Final save. + coordinator.print_on_master("Start saving final model checkpoint") + booster.save_model(model, os.path.join(args.save_dir, "modeling"), shard=True) + coordinator.print_on_master(f"Saved final model checkpoint at epoch {epoch} at folder {args.save_dir}") + + coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB") + + +if __name__ == "__main__": + main()