mirror of https://github.com/hpcaitech/ColossalAI
[NFC] polish test_2p5d/checks_2p5d/check_operation_2p5d.py code style (#1718)
parent
ea961d8fd1
commit
b38efe4e8a
|
@ -39,16 +39,9 @@ def check_AB():
|
|||
B.requires_grad = True
|
||||
|
||||
out_shape = (BATCH_SIZE // TESSERACT_DIM, SEQ_LENGTH, 4 * HIDDEN_SIZE // TESSERACT_DIM)
|
||||
out = Matmul_AB_2p5D.apply(
|
||||
A, B,
|
||||
TESSERACT_DIM, out_shape,
|
||||
i, j, k,
|
||||
ParallelMode.PARALLEL_2P5D_ROW,
|
||||
ParallelMode.PARALLEL_2P5D_COL,
|
||||
data_parallel_rank,
|
||||
pipeline_parallel_rank,
|
||||
pipeline_parallel_size,
|
||||
tensor_parallel_size)
|
||||
out = Matmul_AB_2p5D.apply(A, B, TESSERACT_DIM, out_shape, i, j, k, ParallelMode.PARALLEL_2P5D_ROW,
|
||||
ParallelMode.PARALLEL_2P5D_COL, data_parallel_rank, pipeline_parallel_rank,
|
||||
pipeline_parallel_size, tensor_parallel_size)
|
||||
|
||||
C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE)
|
||||
A_master = A_master.clone()
|
||||
|
@ -116,16 +109,10 @@ def check_ABT():
|
|||
B = B.clone()
|
||||
B.requires_grad = True
|
||||
|
||||
out = Matmul_ABT_2p5D.apply(
|
||||
C, B,
|
||||
TESSERACT_DIM, (BATCH_SIZE // TESSERACT_DIM, SEQ_LENGTH, HIDDEN_SIZE // TESSERACT_DIM),
|
||||
i, j, k,
|
||||
ParallelMode.PARALLEL_2P5D_ROW,
|
||||
ParallelMode.PARALLEL_2P5D_COL,
|
||||
data_parallel_rank,
|
||||
pipeline_parallel_rank,
|
||||
pipeline_parallel_size,
|
||||
tensor_parallel_size)
|
||||
out = Matmul_ABT_2p5D.apply(C, B, TESSERACT_DIM,
|
||||
(BATCH_SIZE // TESSERACT_DIM, SEQ_LENGTH, HIDDEN_SIZE // TESSERACT_DIM), i, j, k,
|
||||
ParallelMode.PARALLEL_2P5D_ROW, ParallelMode.PARALLEL_2P5D_COL, data_parallel_rank,
|
||||
pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size)
|
||||
|
||||
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
|
||||
C_master = C_master.clone()
|
||||
|
@ -191,16 +178,10 @@ def check_ATB():
|
|||
C = C.clone()
|
||||
C.requires_grad = True
|
||||
|
||||
out = Matmul_ATB_2p5D.apply(
|
||||
A, C,
|
||||
TESSERACT_DIM, (HIDDEN_SIZE // TESSERACT_DIM, 4 * HIDDEN_SIZE // TESSERACT_DIM),
|
||||
i, j, k,
|
||||
ParallelMode.PARALLEL_2P5D_ROW,
|
||||
ParallelMode.PARALLEL_2P5D_COL,
|
||||
data_parallel_rank,
|
||||
pipeline_parallel_rank,
|
||||
pipeline_parallel_size,
|
||||
tensor_parallel_size)
|
||||
out = Matmul_ATB_2p5D.apply(A, C, TESSERACT_DIM, (HIDDEN_SIZE // TESSERACT_DIM, 4 * HIDDEN_SIZE // TESSERACT_DIM),
|
||||
i, j, k, ParallelMode.PARALLEL_2P5D_ROW, ParallelMode.PARALLEL_2P5D_COL,
|
||||
data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size,
|
||||
tensor_parallel_size)
|
||||
|
||||
B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE)
|
||||
A_master = A_master.clone()
|
||||
|
@ -208,8 +189,7 @@ def check_ATB():
|
|||
C_master = C_master.clone()
|
||||
C_master.requires_grad = True
|
||||
B_master = torch.matmul(
|
||||
A_master.view(-1, A_master.shape[-1]).transpose(0, 1),
|
||||
C_master.view(-1, C_master.shape[-1]))
|
||||
A_master.view(-1, A_master.shape[-1]).transpose(0, 1), C_master.view(-1, C_master.shape[-1]))
|
||||
B = torch.chunk(B_master, TESSERACT_DIM, dim=0)[i]
|
||||
B = torch.chunk(B, TESSERACT_DIM, dim=-1)[j]
|
||||
check_equal(out, B)
|
||||
|
|
Loading…
Reference in New Issue