[autoparallel] add bias addtion function class (#2098)

* [autoparallel] add bias addtion function class

* polish code

* polish
pull/2101/head
YuliangLiu0306 2022-12-08 11:31:51 +08:00 committed by GitHub
parent 3af7e65dea
commit b175e6d58e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 216 additions and 33 deletions

View File

@ -0,0 +1,2 @@
from .addmm import Addmm
from .bias_addition_function import BiasAdditionFunc, LinearBasedBiasFunc, func_to_func_dict

View File

@ -0,0 +1,76 @@
import operator
import torch
import torch.nn.functional as F
from ...registry import bias_addition_function
from .bias_addition_function import LinearBasedBiasFunc
@bias_addition_function.register(torch.addmm)
class Addmm(LinearBasedBiasFunc):
def extract_kwargs_from_origin_func(self):
kwargs = {}
if 'beta' in self.kwargs:
kwargs['beta'] = self.kwargs['beta']
if 'alpha' in self.kwargs:
kwargs['alpha'] = self.kwargs['alpha']
return kwargs
def coefficent_for_addmm(self, input_proxy, coefficent):
"""
This method is used to create a coefficent node for the numerical correctness.
The formula for torch.addmm is out = beta * input + alpha * (m1 @ m2)
Therefore, we need to use this method insert two more operator.mul nodes for
the computation graph to compute the final result.
"""
node_kind = 'call_function'
node_target = operator.mul
node_args = (
input_proxy,
coefficent,
)
node_kwargs = {}
mul_proxy = self.tracer.create_proxy(node_kind, node_target, node_args, node_kwargs)
return mul_proxy
def transpose_other_operand_for_linear(self, other_proxy):
'''
This method is used to transpose the other operand for linear function.
For example:
input = torch.rand(3, 4)
m1 = torch.rand(3, 5)
m2 = torch.rand(5, 4)
original_output = torch.addmm(input, m1, m2)
# To keep the computation graph consistent with the origin computation graph, we need to transpose the m2
# before we call the linear function.
new_output = torch.linear(m1, m2.transpose(0, 1)) + input
'''
node_kind = 'call_function'
node_target = torch.transpose
node_args = (other_proxy, 0, 1)
node_kwargs = {}
transpose_proxy = self.tracer.create_proxy(node_kind, node_target, node_args, node_kwargs)
return transpose_proxy
def generate(self):
transpose_proxy = self.transpose_other_operand_for_linear(self.args[2])
non_bias_linear_func_proxy = self.create_non_bias_func_proxy(self.args[1], transpose_proxy)
kwargs = self.extract_kwargs_from_origin_func()
if 'beta' in kwargs:
beta = kwargs['beta']
beta_proxy = self.coefficent_for_addmm(self.args[0], beta)
else:
beta_proxy = self.args[0]
if 'alpha' in kwargs:
alpha = kwargs['alpha']
alpha_proxy = self.coefficent_for_addmm(alpha, non_bias_linear_func_proxy)
else:
alpha_proxy = non_bias_linear_func_proxy
bias_addition_proxy = self.create_bias_addition_proxy(alpha_proxy, beta_proxy)
return bias_addition_proxy

View File

@ -0,0 +1,91 @@
import operator
from abc import ABC, abstractmethod
import torch
import torch.nn.functional as F
class BiasAdditionFunc(ABC):
"""
This class is used to construct the restructure computation graph for
call_func node with bias addition inside.
"""
def __init__(self, tracer, target, args, kwargs, substitute_func):
self.tracer = tracer
self.target = target
self.args = args
self.kwargs = kwargs
self.substitute_func = substitute_func
@abstractmethod
def extract_kwargs_from_origin_func(self):
"""
This method is used to extract the kwargs for further graph transform.
For example:
The formula for torch.addmm is out = beta * input + alpha * (m1 @ m2)
The kwargs for addmm function is {beta=1, alpha=1, output=None}, then we need
to insert two more operator.mul nodes for the computation graph to compute the
final result.
"""
pass
@abstractmethod
def generate(self):
"""
This method is used to construct the whole restructure computation graph for call_func node with bias
addition inside.
A whole restructure computation graph will contain a weight node, a bias node, a non-bias addition computation node,
a bias reshape node if needed and a bias addition node.
Use torch.addmm as an example:
The origin node is:
%addmm: call_func[target=torch.addmm](args = (%input_1, m1, m2), kwargs = {beta=1, alpha=1})
Restructured graph is:
%transpose : [#users=1] = call_function[target=torch.transpose](args = (%m2, 0, 1), kwargs = {})
%linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%m1, %transpose), kwargs = {})
%mul : [#users=1] = call_function[target=operator.mul](args = (%input_1, 3), kwargs = {})
%mul_1 : [#users=1] = call_function[target=operator.mul](args = (2, %linear), kwargs = {})
%add : [#users=1] = call_function[target=operator.add](args = (%mul_1, %mul), kwargs = {})
"""
pass
class LinearBasedBiasFunc(BiasAdditionFunc):
"""
This class is used to construct the restructure computation graph for
call_func node based on F.linear.
"""
def create_non_bias_func_proxy(self, input_proxy, other_proxy):
"""
This method is used to create the non_bias_func proxy, the node created by this proxy will
compute the main computation, such as convolution, with bias option banned.
"""
assert self.substitute_func == torch.nn.functional.linear
node_kind = 'call_function'
node_target = self.substitute_func
node_args = (input_proxy, other_proxy)
# non-bias linear does not have any kwargs
node_kwargs = {}
non_bias_func_proxy = self.tracer.create_proxy(node_kind, node_target, node_args, node_kwargs)
return non_bias_func_proxy
def create_bias_addition_proxy(self, non_bias_func_proxy, bias_proxy):
"""
This method is used to create the bias_addition_proxy, the node created by this proxy will
compute the sum of non_bias_func result and bias with some reshape operation if needed.
"""
bias_add_node_kind = 'call_function'
bias_add_node_target = operator.add
bias_add_args = (non_bias_func_proxy, bias_proxy)
bias_add_proxy = self.tracer.create_proxy(bias_add_node_kind, bias_add_node_target, tuple(bias_add_args), {})
return bias_add_proxy
func_to_func_dict = {
torch.addmm: F.linear,
}

View File

@ -20,7 +20,7 @@ from torch.fx.proxy import ParameterProxy, Proxy
from ..proxy import ColoProxy
from ._tracer_utils import compute_meta_data_for_functions_proxy, extract_meta, is_element_in_list
from .bias_addition_patch import module_to_func_dict
from .bias_addition_patch import func_to_func_dict, module_to_func_dict
from .registry import bias_addition_function, bias_addition_module, meta_patched_function, meta_patched_module
__all__ = ['ColoTracer']
@ -96,7 +96,8 @@ class ColoTracer(Tracer):
handle = None
if kind == "call_function":
if bias_addition_function.has(target):
handle = bias_addition_function.get(target)(self, target, args, kwargs)
function_to_substitute = func_to_func_dict[target]
handle = bias_addition_function.get(target)(self, target, args, kwargs, function_to_substitute)
elif bias_addition_function.has(target.__name__):
# use name for some builtin op like @ (matmul)
handle = bias_addition_function.get(target.__name__)(self, target, args, kwargs)

View File

@ -8,7 +8,7 @@ import torch.multiprocessing as mp
import torch.nn as nn
from typing_extensions import Self
from colossalai.auto_parallel.tensor_shard.node_handler import ADDMMFunctionHandler
from colossalai.auto_parallel.tensor_shard.node_handler import LinearFunctionHandler
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
OperationData,
OperationDataType,
@ -19,7 +19,7 @@ from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.testing.pytest_wrapper import run_on_environment_flag
from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
@ -31,7 +31,7 @@ class AddmmModel(nn.Module):
super().__init__()
def forward(self, input, m1, m2):
x = torch.addmm(input, m1, m2)
x = torch.addmm(input, m1, m2, beta=3, alpha=2)
return x
@ -47,9 +47,9 @@ def check_linear_function_handler(rank, input_shape, world_size, port):
m1 = torch.rand(4, 8).cuda()
m2 = torch.rand(8, 16).cuda()
# the index of addmm node in computation graph
node_index = 3
node_index = 4
# strategy number of linear node
strategy_number = 10
strategy_number = 14
# construct input args
input_args = [input, m1, m2]
# construct meta arg names
@ -59,9 +59,20 @@ def check_linear_function_handler(rank, input_shape, world_size, port):
node_index=node_index,
strategy_number=strategy_number,
input_args=input_args,
meta_arg_names=meta_arg_names)
meta_arg_names=meta_arg_names,
node_type='bias_module')
tracer = ColoTracer()
# graph():
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
# %m1 : torch.Tensor [#users=1] = placeholder[target=m1]
# %m2 : torch.Tensor [#users=1] = placeholder[target=m2]
# %transpose : [#users=1] = call_function[target=torch.transpose](args = (%m2, 0, 1), kwargs = {})
# %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%m1, %transpose), kwargs = {})
# %mul : [#users=1] = call_function[target=operator.mul](args = (%input_1, 3), kwargs = {})
# %mul_1 : [#users=1] = call_function[target=operator.mul](args = (2, %linear), kwargs = {})
# %add : [#users=1] = call_function[target=operator.add](args = (%mul_1, %mul), kwargs = {})
# return add
graph = tracer.trace(model,
meta_args={
"input": torch.rand(input_shape).to('meta'),
@ -71,11 +82,11 @@ def check_linear_function_handler(rank, input_shape, world_size, port):
gm = ColoGraphModule(model, graph)
# [input_1, m1, m2, addmm, output]
node_list = list(graph.nodes)
addmm_node = node_list[3]
strategies_vector = StrategiesVector(addmm_node)
linear_node = node_list[4]
strategies_vector = StrategiesVector(linear_node)
# build handler
handler = ADDMMFunctionHandler(node=addmm_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
handler = LinearFunctionHandler(node=linear_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
handler.register_strategy(compute_resharding_cost=False)
strategy_name_list = [val.name for val in strategies_vector]
@ -88,30 +99,22 @@ def check_linear_function_handler(rank, input_shape, world_size, port):
assert mapping['input'].type == OperationDataType.ARG
assert mapping['input'].logical_shape == torch.Size([4, 8])
assert mapping['other'].name == "m2"
assert mapping['other'].data.shape == torch.Size([8, 16])
assert mapping['other'].name == "transpose"
assert mapping['other'].data.shape == torch.Size([16, 8])
assert mapping['other'].type == OperationDataType.ARG
assert mapping['other'].logical_shape == torch.Size([8, 16])
assert mapping['bias'].name == "input_1"
assert mapping['bias'].data.shape == torch.Size(input_shape)
assert mapping['bias'].type == OperationDataType.ARG
assert mapping['bias'].logical_shape == torch.Size([4, 16])
assert mapping['output'].name == "addmm"
assert mapping['output'].name == "linear"
assert mapping['output'].data.shape == torch.Size([4, 16])
assert mapping['output'].type == OperationDataType.OUTPUT
# one strategy will be converted to different physical sharding spec
assert len(strategy_name_list) > 8
# SS = SR x RS
assert 'S0S1 = S0R x RS1' in strategy_name_list
assert 'S1S0 = S1R x RS0' in strategy_name_list
assert 'S0S1 = S0R x RS1_0' in strategy_name_list
assert 'S1S0 = S1R x RS0_0' in strategy_name_list
# SR = SS x SR
assert 'S0R = S0S1 x S1R' in strategy_name_list
assert 'S1R = S1S0 x S0R' in strategy_name_list
assert 'S0R = S0S1 x S1R_0' in strategy_name_list
assert 'S1R = S1S0 x S0R_0' in strategy_name_list
# RS = RS x SS
assert 'RS0 = RS1 x S1S0' in strategy_name_list
@ -125,23 +128,33 @@ def check_linear_function_handler(rank, input_shape, world_size, port):
assert 'RS0 = RR x RS0' in strategy_name_list
assert 'RS1 = RR x RS1' in strategy_name_list
# S01R = S01R x RR
assert 'S01R = S01R x RR_0' in strategy_name_list
# RR = RS01 x S01R
assert 'RR = RS01 x S01R' in strategy_name_list
# RS01 = RR x RS01
assert 'RS01 = RR x RS01' in strategy_name_list
# RR = RR x RR
assert 'RR = RR x RR' in strategy_name_list
for strategy in strategies_vector:
strategy: ShardingStrategy
input_sharding_spec = strategy.get_sharding_spec_by_name('m1')
weight_sharding_spec = strategy.get_sharding_spec_by_name('m2')
output_sharding_spec = strategy.get_sharding_spec_by_name('addmm')
bias_sharding_spec = strategy.get_sharding_spec_by_name('input_1')
weight_sharding_spec = strategy.get_sharding_spec_by_name('transpose')
output_sharding_spec = strategy.get_sharding_spec_by_name('linear')
# make sure the sharding matches across different operation data
assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1]
assert weight_sharding_spec.sharding_sequence[0] == input_sharding_spec.sharding_sequence[1]
assert weight_sharding_spec.sharding_sequence[1] == output_sharding_spec.sharding_sequence[1]
assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1]
assert weight_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[1]
assert weight_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[1]
@parameterize('input_shape', [(16,), (4, 16)])
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.dist
@parameterize('input_shape', [(16,), (4, 16)])
@rerun_if_address_is_in_use()
def test_addmm_handler(input_shape):
world_size = 4