diff --git a/examples/tutorial/opt/opt/README.md b/examples/tutorial/opt/opt/README.md index 4ed0bf3ab..ae287b305 100644 --- a/examples/tutorial/opt/opt/README.md +++ b/examples/tutorial/opt/opt/README.md @@ -39,6 +39,14 @@ bash ./run_clm.sh the pretrained weights from [OPT weight downloading page](https://github.com/facebookresearch/metaseq/tree/main/projects/OPT). - gpu-num: the number of GPUs to use, default is 1. +It uses `wikitext` dataset. + +To use synthetic dataset: + +```bash +bash ./run_clm_synthetic.sh +``` + ## Remarkable Performance On a single GPU, Colossal-AI’s automatic strategy provides remarkable performance gains from the ZeRO Offloading strategy by Microsoft DeepSpeed. Users can experience up to a 40% speedup, at a variety of model scales. However, when using a traditional deep learning training framework like PyTorch, a single GPU can no longer support the training of models at such a scale. diff --git a/examples/tutorial/opt/opt/run_clm.py b/examples/tutorial/opt/opt/run_clm.py index 2b96642ae..00a2da101 100755 --- a/examples/tutorial/opt/opt/run_clm.py +++ b/examples/tutorial/opt/opt/run_clm.py @@ -74,6 +74,7 @@ def get_time_stamp(): def parse_args(): parser = colossalai.get_default_parser() + parser.add_argument("-s", "--synthetic", action="store_true") parser.add_argument( "--dataset_name", type=str, @@ -231,15 +232,16 @@ def parse_args(): args = parser.parse_args() # Sanity checks - if args.dataset_name is None and args.train_file is None and args.validation_file is None: - raise ValueError("Need either a dataset name or a training/validation file.") - else: - if args.train_file is not None: - extension = args.train_file.split(".")[-1] - assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file." - if args.validation_file is not None: - extension = args.validation_file.split(".")[-1] - assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, json or txt file." + if not args.synthetic: + if args.dataset_name is None and args.train_file is None and args.validation_file is None: + raise ValueError("Need either a dataset name or a training/validation file.") + else: + if args.train_file is not None: + extension = args.train_file.split(".")[-1] + assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file." + if args.validation_file is not None: + extension = args.validation_file.split(".")[-1] + assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, json or txt file." if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." @@ -255,6 +257,34 @@ def colo_memory_cap(size_in_GB): print("Using {} GB of GPU memory".format(size_in_GB)) +class DummyDataloader: + + def __init__(self, length, batch_size, seq_len, vocab_size): + self.length = length + self.batch_size = batch_size + self.seq_len = seq_len + self.vocab_size = vocab_size + + def generate(self): + input_ids = torch.randint(0, self.vocab_size, (self.batch_size, self.seq_len), device=get_current_device()) + attention_mask = torch.ones_like(input_ids) + return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": input_ids} + + def __iter__(self): + self.step = 0 + return self + + def __next__(self): + if self.step < self.length: + self.step += 1 + return self.generate() + else: + raise StopIteration + + def __len__(self): + return self.length + + def main(): args = parse_args() disable_existing_loggers() @@ -292,46 +322,47 @@ def main(): # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. logger.info("Start preparing dataset", ranks=[0]) - if args.dataset_name is not None: - # Downloading and loading a dataset from the hub. - raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) - if "validation" not in raw_datasets.keys(): - raw_datasets["validation"] = load_dataset( - args.dataset_name, - args.dataset_config_name, - split=f"train[:{args.validation_split_percentage}%]", - ) - raw_datasets["train"] = load_dataset( - args.dataset_name, - args.dataset_config_name, - split=f"train[{args.validation_split_percentage}%:]", - ) - else: - data_files = {} - dataset_args = {} - if args.train_file is not None: - data_files["train"] = args.train_file - if args.validation_file is not None: - data_files["validation"] = args.validation_file - extension = args.train_file.split(".")[-1] - if extension == "txt": - extension = "text" - dataset_args["keep_linebreaks"] = not args.no_keep_linebreaks - raw_datasets = load_dataset(extension, data_files=data_files, **dataset_args) - # If no validation data is there, validation_split_percentage will be used to divide the dataset. - if "validation" not in raw_datasets.keys(): - raw_datasets["validation"] = load_dataset( - extension, - data_files=data_files, - split=f"train[:{args.validation_split_percentage}%]", - **dataset_args, - ) - raw_datasets["train"] = load_dataset( - extension, - data_files=data_files, - split=f"train[{args.validation_split_percentage}%:]", - **dataset_args, - ) + if not args.synthetic: + if args.dataset_name is not None: + # Downloading and loading a dataset from the hub. + raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) + if "validation" not in raw_datasets.keys(): + raw_datasets["validation"] = load_dataset( + args.dataset_name, + args.dataset_config_name, + split=f"train[:{args.validation_split_percentage}%]", + ) + raw_datasets["train"] = load_dataset( + args.dataset_name, + args.dataset_config_name, + split=f"train[{args.validation_split_percentage}%:]", + ) + else: + data_files = {} + dataset_args = {} + if args.train_file is not None: + data_files["train"] = args.train_file + if args.validation_file is not None: + data_files["validation"] = args.validation_file + extension = args.train_file.split(".")[-1] + if extension == "txt": + extension = "text" + dataset_args["keep_linebreaks"] = not args.no_keep_linebreaks + raw_datasets = load_dataset(extension, data_files=data_files, **dataset_args) + # If no validation data is there, validation_split_percentage will be used to divide the dataset. + if "validation" not in raw_datasets.keys(): + raw_datasets["validation"] = load_dataset( + extension, + data_files=data_files, + split=f"train[:{args.validation_split_percentage}%]", + **dataset_args, + ) + raw_datasets["train"] = load_dataset( + extension, + data_files=data_files, + split=f"train[{args.validation_split_percentage}%:]", + **dataset_args, + ) logger.info("Dataset is prepared", ranks=[0]) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at @@ -399,23 +430,24 @@ def main(): logger.info(f'{model.__class__.__name__} has been created', ranks=[0]) - # Preprocessing the datasets. - # First we tokenize all the texts. - column_names = raw_datasets["train"].column_names - text_column_name = "text" if "text" in column_names else column_names[0] + if not args.synthetic: + # Preprocessing the datasets. + # First we tokenize all the texts. + column_names = raw_datasets["train"].column_names + text_column_name = "text" if "text" in column_names else column_names[0] - def tokenize_function(examples): - return tokenizer(examples[text_column_name]) + def tokenize_function(examples): + return tokenizer(examples[text_column_name]) - with barrier_context(executor_rank=0, parallel_mode=ParallelMode.DATA): - tokenized_datasets = raw_datasets.map( - tokenize_function, - batched=True, - num_proc=args.preprocessing_num_workers, - remove_columns=column_names, - load_from_cache_file=not args.overwrite_cache, - desc="Running tokenizer on dataset", - ) + with barrier_context(executor_rank=0, parallel_mode=ParallelMode.DATA): + tokenized_datasets = raw_datasets.map( + tokenize_function, + batched=True, + num_proc=args.preprocessing_num_workers, + remove_columns=column_names, + load_from_cache_file=not args.overwrite_cache, + desc="Running tokenizer on dataset", + ) if args.block_size is None: block_size = tokenizer.model_max_length @@ -447,38 +479,44 @@ def main(): result["labels"] = result["input_ids"].copy() return result - # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder - # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower - # to preprocess. - # - # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: - # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map + if not args.synthetic: + # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder + # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower + # to preprocess. + # + # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: + # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map - with barrier_context(executor_rank=0, parallel_mode=ParallelMode.DATA): - lm_datasets = tokenized_datasets.map( - group_texts, - batched=True, - num_proc=args.preprocessing_num_workers, - load_from_cache_file=not args.overwrite_cache, - desc=f"Grouping texts in chunks of {block_size}", - ) + with barrier_context(executor_rank=0, parallel_mode=ParallelMode.DATA): + lm_datasets = tokenized_datasets.map( + group_texts, + batched=True, + num_proc=args.preprocessing_num_workers, + load_from_cache_file=not args.overwrite_cache, + desc=f"Grouping texts in chunks of {block_size}", + ) - train_dataset = lm_datasets["train"] - eval_dataset = lm_datasets["validation"] + train_dataset = lm_datasets["train"] + eval_dataset = lm_datasets["validation"] - # Log a few random samples from the training set: - # for index in random.sample(range(len(train_dataset)), 3): - # logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") + # Log a few random samples from the training set: + # for index in random.sample(range(len(train_dataset)), 3): + # logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") - # DataLoaders creation: - train_dataloader = get_dataloader(train_dataset, - shuffle=True, - add_sampler=True, - collate_fn=default_data_collator, - batch_size=args.per_device_train_batch_size) - eval_dataloader = DataLoader(eval_dataset, - collate_fn=default_data_collator, - batch_size=args.per_device_eval_batch_size) + # DataLoaders creation: + train_dataloader = get_dataloader(train_dataset, + shuffle=True, + add_sampler=True, + collate_fn=default_data_collator, + batch_size=args.per_device_train_batch_size) + eval_dataloader = DataLoader(eval_dataset, + collate_fn=default_data_collator, + batch_size=args.per_device_eval_batch_size) + else: + train_dataloader = DummyDataloader(30, args.per_device_train_batch_size, config.max_position_embeddings, + config.vocab_size) + eval_dataloader = DummyDataloader(10, args.per_device_train_batch_size, config.max_position_embeddings, + config.vocab_size) logger.info("Dataloaders have been created", ranks=[0]) # Optimizer @@ -521,9 +559,11 @@ def main(): # Train! total_batch_size = args.per_device_train_batch_size * gpc.get_world_size(ParallelMode.DATA) + num_train_samples = len(train_dataset) if not args.synthetic else 30 * total_batch_size + num_eval_samples = len(eval_dataset) if not args.synthetic else 10 * total_batch_size logger.info("***** Running training *****", ranks=[0]) - logger.info(f" Num examples = {len(train_dataset)}", ranks=[0]) + logger.info(f" Num examples = {num_train_samples}", ranks=[0]) logger.info(f" Num Epochs = {args.num_train_epochs}", ranks=[0]) logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}", ranks=[0]) logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}", ranks=[0]) @@ -572,7 +612,7 @@ def main(): losses.append(loss) losses = torch.cat(losses) - losses = losses[:len(eval_dataset)] + losses = losses[:num_eval_samples] try: eval_loss = torch.mean(losses) perplexity = math.exp(eval_loss) diff --git a/examples/tutorial/opt/opt/run_clm_synthetic.sh b/examples/tutorial/opt/opt/run_clm_synthetic.sh new file mode 100644 index 000000000..80435f16c --- /dev/null +++ b/examples/tutorial/opt/opt/run_clm_synthetic.sh @@ -0,0 +1,21 @@ +set -x +export BS=${1:-16} +export MEMCAP=${2:-0} +export MODEL=${3:-"125m"} +export GPUNUM=${4:-1} + +# make directory for logs +mkdir -p ./logs + +export MODLE_PATH="facebook/opt-${MODEL}" + +# HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 +torchrun \ + --nproc_per_node ${GPUNUM} \ + --master_port 19198 \ + run_clm.py \ + -s \ + --output_dir $PWD \ + --mem_cap ${MEMCAP} \ + --model_name_or_path ${MODLE_PATH} \ + --per_device_train_batch_size ${BS} 2>&1 | tee ./logs/colo_${MODEL}_bs_${BS}_cap_${MEMCAP}_gpu_${GPUNUM}.log