[test] fixed amp convergence comparison test (#454)

pull/455/head
Frank Lee 2022-03-18 16:28:16 +08:00 committed by GitHub
parent a241f61b34
commit af185b5519
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 35 additions and 26 deletions

View File

@ -3,7 +3,7 @@ import colossalai
import copy import copy
import pytest import pytest
import torch.multiprocessing as mp import torch.multiprocessing as mp
from colossalai.amp import convert_to_naive_amp from colossalai.amp import convert_to_naive_amp, convert_to_apex_amp
from tests.components_to_test.registry import non_distributed_component_funcs from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.testing import assert_close_loose from colossalai.testing import assert_close_loose
from colossalai.utils import free_port from colossalai.utils import free_port
@ -23,23 +23,29 @@ def run_naive_amp():
and fp32 torch optimizer and fp32 torch optimizer
""" """
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# create layer # create layer
test_models = ['repeated_computed_layers', 'nested_model'] test_models = ['repeated_computed_layers', 'nested_model', 'resnet18']
for test_name in test_models: for test_name in test_models:
get_component_func = non_distributed_component_funcs.get_callable(test_name) get_component_func = non_distributed_component_funcs.get_callable(test_name)
model_builder, train_dataloader, _, optim_class, _ = get_component_func() model_builder, train_dataloader, _, optim_class, _ = get_component_func()
# create model # create model
amp_model = model_builder(checkpoint=True).cuda() naive_amp_model = model_builder(checkpoint=True).cuda()
torch_model = copy.deepcopy(amp_model) apex_amp_model = copy.deepcopy(naive_amp_model)
# create optimizer # create optimizer
amp_optimizer = optim_class(amp_model.parameters(), lr=1e-3) naive_amp_optimizer = optim_class(naive_amp_model.parameters(), lr=1e-3)
torch_optimizer = optim_class(torch_model.parameters(), lr=1e-3) apex_amp_optimizer = optim_class(apex_amp_model.parameters(), lr=1e-3)
# inject naive amp # inject naive and apex amp
amp_config = dict(initial_scale=1) naive_amp_config = dict(initial_scale=128)
amp_model, amp_optimizer = convert_to_naive_amp(amp_model, amp_optimizer, amp_config) naive_amp_model, naive_amp_optimizer = convert_to_naive_amp(naive_amp_model, naive_amp_optimizer,
naive_amp_config)
apex_amp_config = dict(opt_level='O2', loss_scale=128, keep_batchnorm_fp32=False)
apex_amp_model, apex_amp_optimizer = convert_to_apex_amp(apex_amp_model, apex_amp_optimizer, apex_amp_config)
# create data # create data
data_iter = iter(train_dataloader) data_iter = iter(train_dataloader)
@ -47,25 +53,25 @@ def run_naive_amp():
data = data.cuda() data = data.cuda()
# forward pass # forward pass
amp_output = amp_model(data) naive_amp_output = naive_amp_model(data)
torch_output = torch_model(data) apex_amp_output = apex_amp_model(data)
assert_close_loose(amp_output, torch_output) assert_close_loose(naive_amp_output, apex_amp_output)
# backward # backward
amp_optimizer.backward(amp_output.mean()) naive_amp_optimizer.backward(naive_amp_output.mean())
torch_output.mean().backward() apex_amp_optimizer.backward(apex_amp_output.mean())
# check grad # check grad
for amp_param, torch_param in zip(amp_model.parameters(), torch_model.parameters()): for naive_amp_param, apex_amp_param in zip(naive_amp_model.parameters(), apex_amp_model.parameters()):
assert_close_loose(amp_param.grad, torch_param.grad.half()) assert_close_loose(naive_amp_param.grad, apex_amp_param.grad)
# step # step
amp_optimizer.step() naive_amp_optimizer.step()
torch_optimizer.step() apex_amp_optimizer.step()
# check updated param # check updated param
for amp_param, torch_param in zip(amp_model.parameters(), torch_model.parameters()): for naive_amp_param, apex_amp_param in zip(naive_amp_model.parameters(), apex_amp_model.parameters()):
assert_close_loose(amp_param, torch_param.half()) assert_close_loose(naive_amp_param, apex_amp_param)
def run_dist(rank, world_size, port): def run_dist(rank, world_size, port):

View File

@ -46,7 +46,7 @@ def run_model_test(enable_autocast, shard_strategy_class):
model = DDP(model) model = DDP(model)
for i, (data, label) in enumerate(train_dataloader): for i, (data, label) in enumerate(train_dataloader):
if i > 3: if i > 5:
break break
data, label = cast_tensor_to_fp16(data).cuda(), label.cuda() data, label = cast_tensor_to_fp16(data).cuda(), label.cuda()

View File

@ -18,6 +18,7 @@ from tests.components_to_test.registry import non_distributed_component_funcs
from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.parallel import DistributedDataParallel as DDP
from common import CONFIG, check_sharded_params_padding from common import CONFIG, check_sharded_params_padding
from colossalai.amp import convert_to_apex_amp
def _run_step(model, optimizer, data, label, criterion, enable_autocast=False): def _run_step(model, optimizer, data, label, criterion, enable_autocast=False):
@ -65,8 +66,6 @@ def _run_test_sharded_optim_v2(cpu_offload, shard_strategy_class, use_cpuadam):
model = model_builder(checkpoint=True).half() model = model_builder(checkpoint=True).half()
col_model_deepcopy(zero_model, model) col_model_deepcopy(zero_model, model)
model = model.cuda().float() model = model.cuda().float()
if dist.get_world_size() > 1:
model = DDP(model)
if use_cpuadam: if use_cpuadam:
optimizer_class = CPUAdam optimizer_class = CPUAdam
@ -74,12 +73,16 @@ def _run_test_sharded_optim_v2(cpu_offload, shard_strategy_class, use_cpuadam):
sharded_optim = optimizer_class(zero_model.parameters(), lr=1e-3) sharded_optim = optimizer_class(zero_model.parameters(), lr=1e-3)
sharded_optim = ShardedOptimizerV2(zero_model, sharded_optim, cpu_offload=cpu_offload, initial_scale=2**5) sharded_optim = ShardedOptimizerV2(zero_model, sharded_optim, cpu_offload=cpu_offload, initial_scale=2**5)
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False)
apex_model, apex_optimizer = convert_to_apex_amp(model, optim, amp_config)
if dist.get_world_size() > 1:
apex_model = DDP(apex_model)
for i, (data, label) in enumerate(train_dataloader): for i, (data, label) in enumerate(train_dataloader):
# FIXME() if i > 5, the unittest will fail if i > 5:
if i > 3:
break break
data, label = data.cuda(), label.cuda() data, label = data.cuda(), label.cuda()
_run_step(model, optim, data, label, criterion, False) _run_step(apex_model, apex_optimizer, data, label, criterion, False)
_run_step(zero_model, sharded_optim, data, label, criterion, False) _run_step(zero_model, sharded_optim, data, label, criterion, False)
check_sharded_params_padding(model, zero_model, loose=True) check_sharded_params_padding(model, zero_model, loose=True)
for param in model.parameters(): for param in model.parameters():