mirror of https://github.com/hpcaitech/ColossalAI
[feat] support zbv in mixtral benchmark; (#6083)
* [feat] support zbv in mixtral benchmark; * [fix] MixtralForCausalLMPolicy get_held_layer support zbv; * [feat] update MixtralPipelineForwards --> mixtral_model_forward; support zbv; * [feat] support MixtralPipelineForwards--> mixtral_for_causal_lm_forward for zbv * [fix] fix llama, mixtral benchmark zbv loss none bug; update mixtral & llama policy and modeling; * [feat] Linear1D_COL/ROW support zbv WeightGradStore; * [feat] support use_zbv in llama, mixtral modeling; only replace Linear1D_Col/Row policy; * [fix] fix test case; moe error in second iter * [feat]EPMixtralSparseMoeBlock (op in MOE) support zbv; * [fix] fix bwd b; now bwd w only for Layer replaced by Linear1D_Col/Row; other layer perform a fully bwd; * [fix] debug zbv llama test; * [fix] rm use_zbv flag in Shardconfig; rm debug info; * [fix] add & fix llama test * [feat] support meta cache, meta_grad_send, meta_tensor_send; fix runtime too long in Recv Bwd; benchmark for llama + Hybrid(tp+pp); * [fix\ fix fail case test_shard_llama * [fix] fix test_shard_llama * [fix] fix llama modeling policy; * [fix] fix test_shard_llama ci; * [fix] fix test zerobubble * [fix] fix handle name; rm useless comments; * [fix] fix send recv signature; * [fix] fix comment in llama & benchmark * [feat] support no tensor parallel Linear in shardformer; Add test for use weightGradStore and not use WeightGradStore * [fix] fix linear (no tp) ops func name;feature/zerobubble
parent
dac0e07b13
commit
aed20fb2df
|
@ -1,16 +1,18 @@
|
|||
from functools import partial
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.cuda
|
||||
import torch.distributed
|
||||
from torch.nn import Module, ModuleList
|
||||
from torch.utils._pytree import tree_flatten, tree_map
|
||||
|
||||
from colossalai.accelerator import get_accelerator
|
||||
from colossalai.interface import OptimizerWrapper
|
||||
from colossalai.pipeline.p2p import PipelineP2PCommunication
|
||||
from colossalai.pipeline.p2p import PipelineP2PCommunication, create_send_metadata
|
||||
from colossalai.pipeline.schedule.v_schedule import ScheduledNode
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.pipeline.weight_grad_store import WeightGradStore
|
||||
|
||||
from ._utils import (
|
||||
clone,
|
||||
|
@ -61,11 +63,11 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
self.do_post_validation = False
|
||||
|
||||
# P2PMeta cache
|
||||
# self.enable_metadata_cache = enable_metadata_cache
|
||||
# self.send_tensor_metadata = True
|
||||
# self.send_grad_metadata = True
|
||||
# self.tensor_metadata_recv = None
|
||||
# self.grad_metadata_recv = None
|
||||
self.enable_metadata_cache = enable_metadata_cache
|
||||
self.send_tensor_metadata = True
|
||||
self.send_grad_metadata = True
|
||||
self.tensor_metadata_recv = None
|
||||
self.grad_metadata_recv = None
|
||||
|
||||
# P2P communication
|
||||
self.comm = PipelineP2PCommunication(stage_manager, overlap_p2p=overlap_p2p)
|
||||
|
@ -104,8 +106,11 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
# dy buffer for local send bwd
|
||||
self.local_send_backward_buffer = []
|
||||
|
||||
# wait pp buffer
|
||||
self.wait_handles = []
|
||||
|
||||
def assert_buffer_empty(self):
|
||||
# assert buuffer is empty at end
|
||||
# assert buffer is empty at end
|
||||
assert len(self.input_tensors[0]) == 0
|
||||
assert len(self.input_tensors[1]) == 0
|
||||
assert len(self.output_tensors[0]) == 0
|
||||
|
@ -201,7 +206,7 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
model_chunk_id = self.num_model_chunks - model_chunk_id - 1
|
||||
return model_chunk_id
|
||||
|
||||
def recv_forward(self, model_chunk_id: int, prev_rank: int = None) -> Tuple[Any, List]:
|
||||
def recv_forward(self, model_chunk_id: int, prev_rank: int = None) -> List:
|
||||
"""Copy the forward output from the previous stage in pipeline as the input tensor of this stage.
|
||||
For ZBV.
|
||||
|
||||
|
@ -220,7 +225,8 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
# do nothing; cause u are chunk 0 in first rank, u have no prev rank;
|
||||
#################
|
||||
if self.stage_manager.is_first_stage(ignore_chunk=True):
|
||||
return None, []
|
||||
# return None, []
|
||||
return []
|
||||
|
||||
################
|
||||
# chunk = 0 & not is_first_stage
|
||||
|
@ -228,9 +234,14 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
#################
|
||||
else:
|
||||
prev_rank = self.stage_manager.get_prev_rank()
|
||||
input_tensor, wait_handles = self.comm.recv_forward(prev_rank=prev_rank)
|
||||
input_tensor, wait_handles = self.comm.recv_forward(
|
||||
prev_rank=prev_rank, metadata_recv=self.tensor_metadata_recv
|
||||
)
|
||||
if self.enable_metadata_cache and self.tensor_metadata_recv is None:
|
||||
self.tensor_metadata_recv = create_send_metadata(input_tensor)
|
||||
self.recv_forward_buffer[model_chunk_id].append(input_tensor)
|
||||
return input_tensor, wait_handles
|
||||
# return input_tensor, wait_handles
|
||||
return wait_handles
|
||||
|
||||
else:
|
||||
################
|
||||
|
@ -238,7 +249,8 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
# do nothing; cause u get y from local_send_forward_buffer in schedule f
|
||||
################
|
||||
if self.stage_manager.is_last_stage(ignore_chunk=True):
|
||||
return None, []
|
||||
# return None, []
|
||||
return []
|
||||
|
||||
################
|
||||
# chunk = 1 & not is_last_stage
|
||||
|
@ -246,11 +258,16 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
################
|
||||
else:
|
||||
next_rank = self.stage_manager.get_next_rank()
|
||||
input_tensor, wait_handles = self.comm.recv_forward(next_rank)
|
||||
input_tensor, wait_handles = self.comm.recv_forward(
|
||||
next_rank, metadata_recv=self.tensor_metadata_recv
|
||||
)
|
||||
if self.enable_metadata_cache and self.tensor_metadata_recv is None:
|
||||
self.tensor_metadata_recv = create_send_metadata(input_tensor)
|
||||
self.recv_forward_buffer[model_chunk_id].append(input_tensor)
|
||||
return input_tensor, wait_handles
|
||||
# return input_tensor, wait_handles
|
||||
return wait_handles
|
||||
|
||||
def recv_backward(self, model_chunk_id: int, next_rank: int = None) -> Tuple[Any, List]:
|
||||
def recv_backward(self, model_chunk_id: int, next_rank: int = None) -> List:
|
||||
"""Copy the gradient tensor from the next stage in pipeline as the input gradient of this stage.
|
||||
For ZBV.
|
||||
|
||||
|
@ -270,7 +287,8 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
# do nothing; Already get dy from local_send_backward_buffer in schedule b
|
||||
################
|
||||
if self.stage_manager.is_last_stage(ignore_chunk=True):
|
||||
return None, []
|
||||
# return None, []
|
||||
return []
|
||||
|
||||
################
|
||||
# chunk = 0 & not is_last_stage
|
||||
|
@ -278,9 +296,14 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
################
|
||||
else:
|
||||
next_rank = self.stage_manager.get_next_rank()
|
||||
output_tensor_grad, wait_handles = self.comm.recv_backward(next_rank)
|
||||
output_tensor_grad, wait_handles = self.comm.recv_backward(
|
||||
next_rank, metadata_recv=self.grad_metadata_recv
|
||||
)
|
||||
if self.enable_metadata_cache and self.grad_metadata_recv is None:
|
||||
self.grad_metadata_recv = create_send_metadata(output_tensor_grad)
|
||||
self.recv_backward_buffer[model_chunk_id].append(output_tensor_grad)
|
||||
return output_tensor_grad, wait_handles
|
||||
# return output_tensor_grad, wait_handles
|
||||
return wait_handles
|
||||
|
||||
else:
|
||||
# bwd chunk1 is left V;
|
||||
|
@ -289,7 +312,8 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
# do nothing; get loss from local
|
||||
################
|
||||
if self.stage_manager.is_first_stage(ignore_chunk=True):
|
||||
return None, []
|
||||
# return None, []
|
||||
return []
|
||||
|
||||
################
|
||||
# chunk = 1 & not first stage
|
||||
|
@ -297,9 +321,14 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
################
|
||||
else:
|
||||
prev_rank = self.stage_manager.get_prev_rank()
|
||||
output_tensor_grad, wait_handles = self.comm.recv_backward(next_rank=prev_rank)
|
||||
output_tensor_grad, wait_handles = self.comm.recv_backward(
|
||||
next_rank=prev_rank, metadata_recv=self.grad_metadata_recv
|
||||
)
|
||||
if self.enable_metadata_cache and self.grad_metadata_recv is None:
|
||||
self.grad_metadata_recv = create_send_metadata(output_tensor_grad)
|
||||
self.recv_backward_buffer[model_chunk_id].append(output_tensor_grad)
|
||||
return output_tensor_grad, wait_handles
|
||||
# return output_tensor_grad, wait_handles
|
||||
return wait_handles
|
||||
|
||||
def send_forward(self, model_chunk_id: int, next_rank: int = None) -> List:
|
||||
"""Sends the input tensor to the next stage in pipeline.
|
||||
|
@ -329,7 +358,10 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
else:
|
||||
next_rank = self.stage_manager.get_next_rank()
|
||||
output_tensor = self.send_forward_buffer[model_chunk_id].pop(0)
|
||||
send_handles = self.comm.send_forward(output_object=output_tensor, next_rank=next_rank)
|
||||
send_handles = self.comm.send_forward(
|
||||
output_object=output_tensor, next_rank=next_rank, send_metadata=self.send_tensor_metadata
|
||||
)
|
||||
self.send_tensor_metadata = not self.enable_metadata_cache
|
||||
return send_handles
|
||||
|
||||
else:
|
||||
|
@ -347,7 +379,10 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
else:
|
||||
prev_rank = self.stage_manager.get_prev_rank()
|
||||
output_tensor = self.send_forward_buffer[model_chunk_id].pop(0)
|
||||
send_handles = self.comm.send_forward(output_tensor, prev_rank)
|
||||
send_handles = self.comm.send_forward(
|
||||
output_tensor, prev_rank, send_metadata=self.send_tensor_metadata
|
||||
)
|
||||
self.send_tensor_metadata = not self.enable_metadata_cache
|
||||
return send_handles
|
||||
|
||||
def send_backward(self, model_chunk_id: int, prev_rank: int = None) -> List:
|
||||
|
@ -379,7 +414,10 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
else:
|
||||
prev_rank = self.stage_manager.get_prev_rank()
|
||||
input_tensor_grad = self.send_backward_buffer[model_chunk_id].pop(0)
|
||||
send_handles = self.comm.send_backward(input_tensor_grad, prev_rank)
|
||||
send_handles = self.comm.send_backward(
|
||||
input_tensor_grad, prev_rank, send_metadata=self.send_grad_metadata
|
||||
)
|
||||
self.send_grad_metadata = not self.enable_metadata_cache
|
||||
return send_handles
|
||||
|
||||
# bwd chunk1 is left V;
|
||||
|
@ -398,7 +436,10 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
else:
|
||||
next_rank = self.stage_manager.get_next_rank()
|
||||
input_tensor_grad = self.send_backward_buffer[model_chunk_id].pop(0)
|
||||
send_handles = self.comm.send_backward(input_tensor_grad, next_rank)
|
||||
send_handles = self.comm.send_backward(
|
||||
input_tensor_grad, next_rank, send_metadata=self.send_grad_metadata
|
||||
)
|
||||
self.send_grad_metadata = not self.enable_metadata_cache
|
||||
return send_handles
|
||||
|
||||
def forward_step(
|
||||
|
@ -432,7 +473,6 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
internal_inputs = {} if input_obj is None else input_obj
|
||||
internal_inputs["stage_index"] = self.stage_manager.stage_indices[model_chunk_id]
|
||||
output_obj = model_forward(model_chunk, micro_batch, internal_inputs)
|
||||
|
||||
# last layer in model
|
||||
if model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
|
||||
loss = criterion(output_obj, micro_batch) / self.num_microbatch
|
||||
|
@ -479,11 +519,11 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
output_obj_grad_ = []
|
||||
|
||||
# For chunk 0 stage 0, use micro_batch as input_obj_; and we don't have to cal microbatch dx.
|
||||
if model_chunk_id == 0 and self.stage_manager.is_first_stage(ignore_chunk=True):
|
||||
return None
|
||||
# if model_chunk_id == 0 and self.stage_manager.is_first_stage(ignore_chunk=True):
|
||||
# return None
|
||||
|
||||
# For loss backward; output_obj is loss; output_obj_grad should be None
|
||||
elif model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
|
||||
if model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
|
||||
assert output_obj_grad is None
|
||||
input_obj_, _ = tree_flatten(input_obj)
|
||||
output_obj_.append(output_obj) # LOSS
|
||||
|
@ -504,17 +544,15 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
ctx = optimizer.no_sync()
|
||||
except AttributeError:
|
||||
ctx = model_chunk.no_sync()
|
||||
|
||||
with ctx:
|
||||
optimizer.backward_by_grad(
|
||||
tensor=output_obj_,
|
||||
grad=output_obj_grad_,
|
||||
inputs=input_obj_,
|
||||
retain_graph=True,
|
||||
# inputs=input_obj_,
|
||||
retain_graph=False,
|
||||
)
|
||||
|
||||
# Format output_obj_grad
|
||||
input_obj_grad = {}
|
||||
input_obj_grad = dict()
|
||||
if model_chunk_id == 0 and self.stage_manager.is_first_stage(ignore_chunk=True):
|
||||
pass
|
||||
else:
|
||||
|
@ -651,10 +689,10 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
# Do not release_tensor_data loss, release_tensor_data other output_obj;
|
||||
if model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
|
||||
self.output_tensors[model_chunk_id].append(output_obj)
|
||||
self.output_tensors_dw[model_chunk_id].append(output_obj)
|
||||
# self.output_tensors_dw[model_chunk_id].append(output_obj)
|
||||
else:
|
||||
self.output_tensors[model_chunk_id].append(output_obj)
|
||||
self.output_tensors_dw[model_chunk_id].append(output_obj)
|
||||
# self.output_tensors_dw[model_chunk_id].append(output_obj)
|
||||
|
||||
# add output to send_fwd_buffer
|
||||
if model_chunk_id == 0: # chunk 0
|
||||
|
@ -706,15 +744,20 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
input_obj = self.input_tensors[model_chunk_id].pop(0)
|
||||
output_obj = self.output_tensors[model_chunk_id].pop(0)
|
||||
|
||||
# save output_tensor_grad for dw
|
||||
if model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
|
||||
# we save loss here
|
||||
self.output_tensors_grad_dw[model_chunk_id].append(output_obj)
|
||||
else:
|
||||
# we save output_tensor_grad here
|
||||
self.output_tensors_grad_dw[model_chunk_id].append(output_tensor_grad)
|
||||
# # save output_tensor_grad for dw
|
||||
# if model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
|
||||
# # we save loss here
|
||||
# self.output_tensors_grad_dw[model_chunk_id].append(output_obj)
|
||||
# else:
|
||||
# # we save output_tensor_grad here
|
||||
# self.output_tensors_grad_dw[model_chunk_id].append(output_tensor_grad)
|
||||
# the_output_obj_grad = []
|
||||
# if isinstance(output_obj, dict):
|
||||
# for (k, v) in output_obj.items():
|
||||
# the_output_obj_grad.append(v.requires_grad)
|
||||
# else:
|
||||
# the_output_obj_grad.append(output_obj.requires_grad)
|
||||
|
||||
# Step2: bwd step
|
||||
input_object_grad = self.backward_b_step(
|
||||
model_chunk=model_chunk,
|
||||
model_chunk_id=model_chunk_id,
|
||||
|
@ -739,6 +782,7 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
# send to next
|
||||
else:
|
||||
self.send_backward_buffer[model_chunk_id].append(input_object_grad)
|
||||
WeightGradStore.flush(chunk=model_chunk_id)
|
||||
|
||||
def schedule_w(
|
||||
self,
|
||||
|
@ -758,16 +802,17 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
"""
|
||||
|
||||
# get y & dy from buffer
|
||||
output_obj = self.output_tensors_dw[model_chunk_id].pop(0)
|
||||
output_obj_grad = self.output_tensors_grad_dw[model_chunk_id].pop(0)
|
||||
# output_obj = self.output_tensors_dw[model_chunk_id].pop(0)
|
||||
# output_obj_grad = self.output_tensors_grad_dw[model_chunk_id].pop(0)
|
||||
WeightGradStore.pop(chunk=model_chunk_id)
|
||||
|
||||
self.backward_w_step(
|
||||
model_chunk=model_chunk,
|
||||
model_chunk_id=model_chunk_id,
|
||||
optimizer=optimizer,
|
||||
output_obj=output_obj,
|
||||
output_obj_grad=output_obj_grad,
|
||||
)
|
||||
# self.backward_w_step(
|
||||
# model_chunk=model_chunk,
|
||||
# model_chunk_id=model_chunk_id,
|
||||
# optimizer=optimizer,
|
||||
# output_obj=output_obj,
|
||||
# output_obj_grad=output_obj_grad,
|
||||
# )
|
||||
|
||||
def run_forward_only(
|
||||
self,
|
||||
|
@ -844,7 +889,8 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
if scheduled_node.type in AUTO_SCHEDULE_COMMUNICATION_TYPES:
|
||||
# communication
|
||||
communication_func = self.communication_map[scheduled_node.type]
|
||||
communication_func(scheduled_node.chunk)
|
||||
wait_handle = communication_func(scheduled_node.chunk)
|
||||
self.wait_handles.append(wait_handle)
|
||||
elif scheduled_node.type == "F":
|
||||
self.schedule_f(
|
||||
scheduled_node=scheduled_node,
|
||||
|
@ -868,6 +914,9 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
model_chunk_id=scheduled_node.chunk,
|
||||
optimizer=optimizer,
|
||||
)
|
||||
for h in self.wait_handles:
|
||||
for hh in h:
|
||||
hh.wait()
|
||||
|
||||
# return loss & output
|
||||
if outputs is not None:
|
||||
|
@ -907,5 +956,4 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||
)
|
||||
|
||||
self.assert_buffer_empty()
|
||||
|
||||
return result
|
||||
|
|
|
@ -223,7 +223,6 @@ class PipelineStageManager:
|
|||
|
||||
# calculate the num_layers per stage
|
||||
layers_per_stage = [quotient] * num_stages * num_model_chunks
|
||||
|
||||
# deal with the rest layers
|
||||
if remainder > 0:
|
||||
start_position = (num_stages * num_model_chunks) // 2 - remainder // 2
|
||||
|
|
|
@ -0,0 +1,32 @@
|
|||
import queue
|
||||
|
||||
|
||||
class WeightGradStore:
|
||||
|
||||
cache = []
|
||||
weight_grad_queue = [queue.Queue(), queue.Queue()]
|
||||
|
||||
@classmethod
|
||||
def put(cls, total_input, grad_output, weight, func):
|
||||
# func(total_input, grad_output, weight.main_grad)
|
||||
cls.cache.append((total_input, grad_output, weight, func))
|
||||
|
||||
@classmethod
|
||||
def flush(cls, chunk=0):
|
||||
cls.weight_grad_queue[chunk].put(cls.cache)
|
||||
cls.cache = []
|
||||
|
||||
@classmethod
|
||||
def pop(cls, chunk=0):
|
||||
# print(f"chunk id {chunk} queue size {cls.weight_grad_queue[chunk].qsize()}")
|
||||
if cls.weight_grad_queue[chunk].qsize() > 0:
|
||||
stored_grads = cls.weight_grad_queue[chunk].get()
|
||||
for total_input, grad_output, weight, func in stored_grads:
|
||||
if weight.grad is not None:
|
||||
func(total_input, grad_output, weight.grad)
|
||||
# for first bwd; weight.grad is None, assign grad_weight to weight.grad
|
||||
else:
|
||||
grad_weight = func(total_input, grad_output)
|
||||
weight.grad = grad_weight
|
||||
else:
|
||||
raise Exception("Pop empty queue.")
|
|
@ -2,7 +2,7 @@ from ._operation import all_to_all_comm
|
|||
from .attn import AttnMaskType, ColoAttention, RingAttention, get_pad_info
|
||||
from .dropout import DropoutForParallelInput, DropoutForReplicatedInput
|
||||
from .embedding import Embedding1D, PaddingEmbedding, VocabParallelEmbedding1D
|
||||
from .linear import Linear1D_Col, Linear1D_Row, PaddingLMHead, VocabParallelLMHead1D
|
||||
from .linear import Linear1D_Col, Linear1D_Row, LinearWithGradAccum, PaddingLMHead, VocabParallelLMHead1D
|
||||
from .loss import cross_entropy_1d, dist_cross_entropy
|
||||
from .normalization import FusedLayerNorm, FusedRMSNorm, LayerNorm, RMSNorm
|
||||
from .parallel_module import ParallelModule
|
||||
|
@ -11,6 +11,7 @@ from .qkv_fused_linear import FusedLinear1D_Col, GPT2FusedLinearConv1D_Col, GPT2
|
|||
__all__ = [
|
||||
"Embedding1D",
|
||||
"VocabParallelEmbedding1D",
|
||||
"LinearWithGradAccum",
|
||||
"Linear1D_Col",
|
||||
"Linear1D_Row",
|
||||
"GPT2FusedLinearConv1D_Col",
|
||||
|
|
|
@ -1,7 +1,11 @@
|
|||
import functools
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn.functional as F
|
||||
|
||||
from colossalai.pipeline.weight_grad_store import WeightGradStore
|
||||
|
||||
from .utils import is_share_sp_tp
|
||||
|
||||
try:
|
||||
|
@ -125,12 +129,13 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
|
|||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False):
|
||||
def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False, use_zbv=False):
|
||||
ctx.save_for_backward(input_, weight, bias)
|
||||
ctx.use_bias = bias is not None
|
||||
ctx.process_group = process_group
|
||||
ctx.async_grad_allreduce = async_grad_allreduce
|
||||
ctx.fp8_communication = fp8_communication
|
||||
ctx.use_zbv = use_zbv
|
||||
if bias is not None:
|
||||
output = F.linear(input_, weight, bias)
|
||||
else:
|
||||
|
@ -143,6 +148,13 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
|
|||
input, weight, bias = ctx.saved_tensors
|
||||
use_bias = ctx.use_bias
|
||||
fp8_communication = ctx.fp8_communication
|
||||
use_zbv = ctx.use_zbv
|
||||
|
||||
def execute_w_pass_grad_accum(_input_, _grad_output_, _weight_main_grad_, wgrad_gemm_accum_func=None):
|
||||
wgrad_gemm_accum_func(_input_, _grad_output_, _weight_main_grad_)
|
||||
|
||||
def execute_w_pass(_input_, _grad_output_, _weight_main_grad_=None, wgrad_gemm_func=None):
|
||||
return wgrad_gemm_func(_grad_output_.t(), _input_)
|
||||
|
||||
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to bias.
|
||||
if use_bias:
|
||||
|
@ -164,24 +176,160 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
|
|||
handle = dist.all_reduce(grad_input, group=ctx.process_group, async_op=True)
|
||||
# Relay on CUDA_DEVICE_MAX_CONNECTIONS=1 to have
|
||||
# all-reduce scheduled first and have GPU resources allocated, CUDA_DEVICE_MAX_CONNECTIONS=1 is set in shardformer.py
|
||||
|
||||
if _grad_accum_fusion_available and weight.grad is not None:
|
||||
grad = weight.grad
|
||||
if grad.dtype == torch.float32:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
elif grad.dtype == torch.float16:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
|
||||
if use_zbv:
|
||||
# TODO: append input, grad_output_, weight, grad func to WeightGradStore
|
||||
if grad.dtype == torch.float32:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass_grad_accum,
|
||||
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
elif grad.dtype in (torch.float16, torch.bfloat16):
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass_grad_accum,
|
||||
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
raise RuntimeError("Unsupported gradient type for gradient accumulation fusion")
|
||||
else:
|
||||
if grad.dtype == torch.float32:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
elif grad.dtype == torch.float16:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
else:
|
||||
if use_zbv:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass,
|
||||
wgrad_gemm_func=torch.matmul,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
|
||||
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
||||
|
||||
if ctx.async_grad_allreduce and not fp8_communication:
|
||||
handle.wait()
|
||||
return grad_input, grad_weight, grad_bias, None, None, None, None
|
||||
|
||||
|
||||
class LinearWithGradAccum(torch.autograd.Function):
|
||||
"""
|
||||
Linear layer baseline (no tensor parallel version).
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, weight, bias, async_grad_allreduce, use_zbv=False):
|
||||
ctx.save_for_backward(input_, weight, bias)
|
||||
ctx.use_bias = bias is not None
|
||||
ctx.async_grad_allreduce = async_grad_allreduce
|
||||
ctx.use_zbv = use_zbv
|
||||
if bias is not None:
|
||||
output = F.linear(input_, weight, bias)
|
||||
else:
|
||||
output = F.linear(input_, weight)
|
||||
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
input, weight, bias = ctx.saved_tensors
|
||||
use_bias = ctx.use_bias
|
||||
use_zbv = ctx.use_zbv
|
||||
|
||||
def execute_w_pass_grad_accum(_input_, _grad_output_, _weight_main_grad_, wgrad_gemm_accum_func=None):
|
||||
wgrad_gemm_accum_func(_input_, _grad_output_, _weight_main_grad_)
|
||||
|
||||
def execute_w_pass(_input_, _grad_output_, _weight_main_grad_=None, wgrad_gemm_func=None):
|
||||
return wgrad_gemm_func(_grad_output_.t(), _input_)
|
||||
|
||||
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to bias.
|
||||
if use_bias:
|
||||
bias.view(bias.shape)
|
||||
|
||||
total_input = input.contiguous()
|
||||
grad_input = grad_output.matmul(weight)
|
||||
grad_output = grad_output.contiguous()
|
||||
# Convert the tensor shapes to 2D for execution compatibility
|
||||
if len(grad_output.shape) > 2:
|
||||
grad_output = grad_output.view(-1, grad_output.shape[-1])
|
||||
total_input = total_input.view(-1, total_input.shape[-1])
|
||||
|
||||
if _grad_accum_fusion_available and weight.grad is not None:
|
||||
grad = weight.grad
|
||||
if use_zbv:
|
||||
# TODO: append input, grad_output_, weight, grad func to WeightGradStore
|
||||
if grad.dtype == torch.float32:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass_grad_accum,
|
||||
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
elif grad.dtype in (torch.float16, torch.bfloat16):
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass_grad_accum,
|
||||
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
raise RuntimeError("Unsupported gradient type for gradient accumulation fusion")
|
||||
else:
|
||||
if grad.dtype == torch.float32:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
elif grad.dtype == torch.float16:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
else:
|
||||
if use_zbv:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass,
|
||||
wgrad_gemm_func=torch.matmul,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
|
||||
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
||||
|
||||
return grad_input, grad_weight, grad_bias, None, None, None, None
|
||||
|
||||
|
@ -1043,12 +1191,18 @@ def matmul_with_async_comm(input_, weight, bias, process_group, async_grad_allre
|
|||
)
|
||||
|
||||
|
||||
def linear_with_async_comm(input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False):
|
||||
def linear_with_async_comm(
|
||||
input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False, use_zbv=False
|
||||
):
|
||||
return LinearWithAsyncCommunication.apply(
|
||||
input_, weight, bias, process_group, async_grad_allreduce, fp8_communication
|
||||
input_, weight, bias, process_group, async_grad_allreduce, fp8_communication, use_zbv
|
||||
)
|
||||
|
||||
|
||||
def linear_with_grad_accum(input_, weight, bias, async_grad_allreduce, use_zbv=False):
|
||||
return LinearWithGradAccum.apply(input_, weight, bias, async_grad_allreduce, use_zbv)
|
||||
|
||||
|
||||
def linear_gather_forward_reducescatter_backward(
|
||||
input_, weight, bias, process_group, async_grad_reduce_scatter, dim, overlap, ring=False
|
||||
):
|
||||
|
|
|
@ -28,6 +28,7 @@ from ._operation import (
|
|||
linear_gather_forward_reducescatter_backward,
|
||||
linear_reducescatter_forward_gather_backward,
|
||||
linear_with_async_comm,
|
||||
linear_with_grad_accum,
|
||||
reduce_forward,
|
||||
reducescatter_forward_gather_backward,
|
||||
split_forward_gather_backward,
|
||||
|
@ -35,7 +36,148 @@ from ._operation import (
|
|||
from .parallel_module import PaddingParallelModule, ParallelModule
|
||||
from .utils import create_randomizer_with_offset
|
||||
|
||||
__all__ = ["Linear1D_Col", "Linear1D_Row"]
|
||||
__all__ = ["LinearWithGradAccum", "Linear1D_Col", "Linear1D_Row"]
|
||||
|
||||
|
||||
class LinearWithGradAccum(ParallelModule):
|
||||
r"""Linear layer with no parallelism.
|
||||
|
||||
Args:
|
||||
in_features (int): size of each input sample.
|
||||
out_features (int): size of each output sample.
|
||||
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
|
||||
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
|
||||
device (`torch.device`): The device of parameters, defaults to None.
|
||||
gather_output (bool, optional): If true, call all-gather on output and make Y available
|
||||
to all GPUs, otherwise, every GPU will have its output
|
||||
which is :math:`Y_i = XA_i`, defaults to False
|
||||
seq_parallel (`bool`): If set to ``True``, it will use sequence parallel, defaults to False.
|
||||
overlap (`bool`): If set to ``True``, it will overlap input all-gather with gradient computation during backward, defaults to False.
|
||||
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer,
|
||||
which is preserved for kernel fusion, defaults to False
|
||||
weight_initializer (`typing.Callable`):
|
||||
The initializer of weight, defaults to kaiming uniform initializer.
|
||||
bias_initializer (`typing.Callable`):
|
||||
The initializer of bias, defaults to xavier uniform initializer.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
out_features: int,
|
||||
bias: bool = True,
|
||||
dtype: torch.dtype = None,
|
||||
device: torch.device = None,
|
||||
skip_bias_add: bool = False,
|
||||
weight: Optional[Parameter] = None,
|
||||
bias_: Optional[Parameter] = None,
|
||||
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
||||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
||||
use_zbv: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(weight=weight, bias_=bias_, **kwargs)
|
||||
|
||||
# Keep input parameters
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
self.skip_bias_add = skip_bias_add
|
||||
self.device = device
|
||||
self.use_zbv = use_zbv
|
||||
|
||||
if skip_bias_add and not bias:
|
||||
raise ValueError("cannot skip bias addition if bias is None")
|
||||
|
||||
# offset the seed with randomizer index and rank
|
||||
seed = torch.random.initial_seed()
|
||||
|
||||
self.randomizer = create_randomizer_with_offset(seed, process_group=None)
|
||||
|
||||
# sanity check
|
||||
if weight is not None:
|
||||
assert not bias or bias_ is not None, "bias_ must be provided if bias is True when weight is not None"
|
||||
else:
|
||||
assert bias_ is None, "bias_ must be None if weight is None"
|
||||
|
||||
# Parameters.
|
||||
if weight is None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
self.weight = Parameter(torch.empty(self.out_features, self.in_features, **factory_kwargs))
|
||||
else:
|
||||
weight.data = weight.data.to(device=device, dtype=dtype)
|
||||
self.weight = weight
|
||||
|
||||
if bias:
|
||||
if bias_ is None:
|
||||
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs))
|
||||
else:
|
||||
bias_.data = bias_.data.to(device=device, dtype=dtype)
|
||||
self.bias = bias_
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
if weight is None:
|
||||
# init weights
|
||||
self.reset_parameters(weight_initializer, bias_initializer)
|
||||
|
||||
@staticmethod
|
||||
def from_native_module(module: nn.Linear, **kwargs) -> ParallelModule:
|
||||
r"""
|
||||
Convert a native PyTorch linear layer to a parallelized linear layer.
|
||||
"""
|
||||
LazyInitContext.materialize(module)
|
||||
# get the attributes
|
||||
in_features = module.in_features
|
||||
out_features = module.out_features
|
||||
bias = module.bias is not None
|
||||
device = module.weight.device
|
||||
|
||||
linear_1d = LinearWithGradAccum(
|
||||
in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
device=device,
|
||||
weight=module.weight,
|
||||
bias_=module.bias,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return linear_1d
|
||||
|
||||
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
|
||||
with self.randomizer.fork_rng(enable_cpu=True):
|
||||
fan_in, fan_out = self.in_features, self.out_features
|
||||
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
||||
if self.bias is not None:
|
||||
bias_initializer(self.bias, fan_in=fan_in)
|
||||
|
||||
def forward(self, input_: Tensor) -> Tuple[Tensor, Tensor]:
|
||||
assert (
|
||||
input_.shape[-1] == self.weight.shape[-1]
|
||||
), "Invalid shapes in Linear1D_Col forward: input={}, weight={}. Expected last dim of input {}.".format(
|
||||
input_.shape, self.weight.shape, self.weight.shape[-1]
|
||||
)
|
||||
|
||||
# Set up backprop all-reduce.
|
||||
input_parallel = input_
|
||||
|
||||
# Matrix multiply.
|
||||
bias = self.bias if not self.skip_bias_add else None
|
||||
output_parallel = linear_with_grad_accum(
|
||||
input_parallel,
|
||||
self.weight,
|
||||
bias,
|
||||
False,
|
||||
use_zbv=self.use_zbv,
|
||||
)
|
||||
|
||||
output = output_parallel
|
||||
|
||||
if self.skip_bias_add:
|
||||
return output, self.bias
|
||||
else:
|
||||
return output
|
||||
|
||||
|
||||
class Linear1D_Col(ParallelModule):
|
||||
|
@ -85,6 +227,7 @@ class Linear1D_Col(ParallelModule):
|
|||
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
||||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
||||
fp8_communication: bool = False,
|
||||
use_zbv: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(weight=weight, bias_=bias_, **kwargs)
|
||||
|
@ -100,6 +243,7 @@ class Linear1D_Col(ParallelModule):
|
|||
self.device = device
|
||||
self.process_group = process_group
|
||||
self.fp8_communication = fp8_communication
|
||||
self.use_zbv = use_zbv
|
||||
|
||||
if skip_bias_add and not bias:
|
||||
raise ValueError("cannot skip bias addition if bias is None")
|
||||
|
@ -201,13 +345,18 @@ class Linear1D_Col(ParallelModule):
|
|||
|
||||
# Matrix multiply.
|
||||
bias = self.bias if not self.skip_bias_add else None
|
||||
|
||||
if self.seq_parallel_mode == "split_gather":
|
||||
input_parallel = gather_forward_reducescatter_backward(
|
||||
input_parallel, self.process_group, self.seq_parallel_dim, fp8_communication=self.fp8_communication
|
||||
)
|
||||
output_parallel = linear_with_async_comm(
|
||||
input_parallel, self.weight, bias, self.process_group, False, fp8_communication=self.fp8_communication
|
||||
input_parallel,
|
||||
self.weight,
|
||||
bias,
|
||||
self.process_group,
|
||||
False,
|
||||
fp8_communication=self.fp8_communication,
|
||||
use_zbv=self.use_zbv,
|
||||
)
|
||||
elif self.seq_parallel_mode == "ring":
|
||||
output_parallel = linear_gather_forward_reducescatter_backward(
|
||||
|
@ -215,9 +364,14 @@ class Linear1D_Col(ParallelModule):
|
|||
)
|
||||
else:
|
||||
output_parallel = linear_with_async_comm(
|
||||
input_parallel, self.weight, bias, self.process_group, True, fp8_communication=self.fp8_communication
|
||||
input_parallel,
|
||||
self.weight,
|
||||
bias,
|
||||
self.process_group,
|
||||
True,
|
||||
fp8_communication=self.fp8_communication,
|
||||
use_zbv=self.use_zbv,
|
||||
)
|
||||
|
||||
if self.gather_output:
|
||||
# All-gather across the partitions.
|
||||
output = gather_forward_split_backward(
|
||||
|
@ -273,6 +427,7 @@ class Linear1D_Row(ParallelModule):
|
|||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
||||
stream_chunk_num: int = 1,
|
||||
fp8_communication: bool = False,
|
||||
use_zbv: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
@ -288,6 +443,7 @@ class Linear1D_Row(ParallelModule):
|
|||
self.seq_parallel_dim = seq_parallel_dim
|
||||
self.num_partitions = dist.get_world_size(self.process_group)
|
||||
self.fp8_communication = fp8_communication
|
||||
self.use_zbv = use_zbv
|
||||
|
||||
if skip_bias_add and not bias:
|
||||
raise ValueError("cannot skip bias addition if bias is None")
|
||||
|
@ -429,10 +585,14 @@ class Linear1D_Row(ParallelModule):
|
|||
output = torch.cat(output_parallel_list, dim=-1)
|
||||
else:
|
||||
if self.seq_parallel_mode is None:
|
||||
output_parallel = linear_with_async_comm(input_, self.weight, None, self.process_group, False)
|
||||
output_parallel = linear_with_async_comm(
|
||||
input_, self.weight, None, self.process_group, False, use_zbv=self.use_zbv
|
||||
)
|
||||
output = reduce_forward(output_parallel, self.process_group, fp8_communication=self.fp8_communication)
|
||||
elif self.seq_parallel_mode == "split_gather":
|
||||
output_parallel = linear_with_async_comm(input_, self.weight, None, self.process_group, False)
|
||||
output_parallel = linear_with_async_comm(
|
||||
input_, self.weight, None, self.process_group, False, use_zbv=self.use_zbv
|
||||
)
|
||||
output = reducescatter_forward_gather_backward(
|
||||
output_parallel, self.process_group, self.seq_parallel_dim, fp8_communication=self.fp8_communication
|
||||
)
|
||||
|
@ -445,7 +605,9 @@ class Linear1D_Row(ParallelModule):
|
|||
ring=True,
|
||||
)
|
||||
else:
|
||||
output_parallel = linear_with_async_comm(input_, self.weight, None, self.process_group, False)
|
||||
output_parallel = linear_with_async_comm(
|
||||
input_, self.weight, None, self.process_group, False, use_zbv=self.use_zbv
|
||||
)
|
||||
output = reduce_forward(output_parallel, self.process_group)
|
||||
|
||||
if not self.skip_bias_add:
|
||||
|
|
|
@ -82,7 +82,7 @@ class LlamaPipelineForwards:
|
|||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape[:2]
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape[:2]
|
||||
batch_size, seq_length = inputs_embeds.shape[:2]
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
if inputs_embeds is None:
|
||||
|
|
|
@ -60,6 +60,7 @@ class EPMixtralSparseMoeBlock(ParallelModule):
|
|||
moe_dp_group: ProcessGroup,
|
||||
ep_group: ProcessGroup,
|
||||
fp8_communication: bool = False,
|
||||
use_zbv: bool = False,
|
||||
):
|
||||
assert tp_group is not None
|
||||
assert moe_dp_group is not None
|
||||
|
@ -70,6 +71,7 @@ class EPMixtralSparseMoeBlock(ParallelModule):
|
|||
self.ep_rank = dist.get_rank(ep_group)
|
||||
self.ep_group = ep_group
|
||||
self.fp8_communication = fp8_communication
|
||||
self.use_zbv = use_zbv
|
||||
|
||||
if self.num_experts % self.ep_size != 0:
|
||||
raise ValueError("The number of experts must be divisible by the number of expert parallel groups.")
|
||||
|
@ -89,13 +91,13 @@ class EPMixtralSparseMoeBlock(ParallelModule):
|
|||
if self.tp_group.size() > 1:
|
||||
for expert in held_experts:
|
||||
expert.w1 = Linear1D_Col.from_native_module(
|
||||
expert.w1, self.tp_group, fp8_communication=self.fp8_communication
|
||||
expert.w1, self.tp_group, fp8_communication=self.fp8_communication, use_zbv=self.use_zbv
|
||||
)
|
||||
expert.w3 = Linear1D_Col.from_native_module(
|
||||
expert.w3, self.tp_group, fp8_communication=self.fp8_communication
|
||||
expert.w3, self.tp_group, fp8_communication=self.fp8_communication, use_zbv=self.use_zbv
|
||||
)
|
||||
expert.w2 = Linear1D_Row.from_native_module(
|
||||
expert.w2, self.tp_group, fp8_communication=self.fp8_communication
|
||||
expert.w2, self.tp_group, fp8_communication=self.fp8_communication, use_zbv=self.use_zbv
|
||||
)
|
||||
|
||||
for p in self.experts.parameters():
|
||||
|
@ -399,6 +401,7 @@ class MixtralPipelineForwards:
|
|||
|
||||
if output_router_logits and past_router_logits is not None:
|
||||
all_router_logits = past_router_logits + all_router_logits
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
|
@ -512,7 +515,6 @@ class MixtralPipelineForwards:
|
|||
hidden_states = outputs[0]
|
||||
logits = self.lm_head(hidden_states)
|
||||
logits = logits.float()
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
|
|
|
@ -60,6 +60,8 @@ class LlamaPolicy(Policy):
|
|||
else:
|
||||
norm_cls = RMSNorm
|
||||
|
||||
use_zbv = self.pipeline_stage_manager is not None and self.pipeline_stage_manager.use_zbv
|
||||
|
||||
sp_mode = self.shard_config.sequence_parallelism_mode or None
|
||||
sp_size = self.shard_config.sequence_parallel_size or None
|
||||
sp_group = self.shard_config.sequence_parallel_process_group or None
|
||||
|
@ -126,37 +128,65 @@ class LlamaPolicy(Policy):
|
|||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.q_proj",
|
||||
target_module=Linear1D_Col,
|
||||
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
|
||||
kwargs=dict(
|
||||
seq_parallel_mode=sp_mode,
|
||||
fp8_communication=self.shard_config.fp8_communication,
|
||||
use_zbv=use_zbv,
|
||||
),
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.k_proj",
|
||||
target_module=Linear1D_Col,
|
||||
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
|
||||
kwargs=dict(
|
||||
seq_parallel_mode=sp_mode,
|
||||
fp8_communication=self.shard_config.fp8_communication,
|
||||
use_zbv=use_zbv,
|
||||
),
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.v_proj",
|
||||
target_module=Linear1D_Col,
|
||||
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
|
||||
kwargs=dict(
|
||||
seq_parallel_mode=sp_mode,
|
||||
fp8_communication=self.shard_config.fp8_communication,
|
||||
use_zbv=use_zbv,
|
||||
),
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.o_proj",
|
||||
target_module=Linear1D_Row,
|
||||
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
|
||||
kwargs=dict(
|
||||
seq_parallel_mode=sp_mode,
|
||||
fp8_communication=self.shard_config.fp8_communication,
|
||||
use_zbv=use_zbv,
|
||||
),
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.gate_proj",
|
||||
target_module=Linear1D_Col,
|
||||
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
|
||||
kwargs=dict(
|
||||
seq_parallel_mode=sp_mode,
|
||||
fp8_communication=self.shard_config.fp8_communication,
|
||||
use_zbv=use_zbv,
|
||||
),
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.up_proj",
|
||||
target_module=Linear1D_Col,
|
||||
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
|
||||
kwargs=dict(
|
||||
seq_parallel_mode=sp_mode,
|
||||
fp8_communication=self.shard_config.fp8_communication,
|
||||
use_zbv=use_zbv,
|
||||
),
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.down_proj",
|
||||
target_module=Linear1D_Row,
|
||||
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
|
||||
kwargs=dict(
|
||||
seq_parallel_mode=sp_mode,
|
||||
fp8_communication=self.shard_config.fp8_communication,
|
||||
use_zbv=use_zbv,
|
||||
),
|
||||
),
|
||||
],
|
||||
)
|
||||
|
@ -265,7 +295,6 @@ class LlamaPolicy(Policy):
|
|||
not stage_manager.use_zbv and stage_manager.is_last_stage(ignore_chunk=True)
|
||||
):
|
||||
held_layers.append(module.norm)
|
||||
|
||||
else:
|
||||
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
|
||||
if stage_manager.is_first_stage():
|
||||
|
@ -385,6 +414,7 @@ class LlamaForSequenceClassificationPolicy(LlamaPolicy):
|
|||
from transformers import LlamaForSequenceClassification
|
||||
|
||||
policy = super().module_policy()
|
||||
use_zbv = self.pipeline_stage_manager is not None and self.pipeline_stage_manager.use_zbv
|
||||
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
# add a new item for sequence classification
|
||||
|
@ -397,6 +427,7 @@ class LlamaForSequenceClassificationPolicy(LlamaPolicy):
|
|||
kwargs=dict(
|
||||
gather_output=True,
|
||||
fp8_communication=self.shard_config.fp8_communication,
|
||||
use_zbv=use_zbv,
|
||||
),
|
||||
)
|
||||
]
|
||||
|
|
|
@ -52,6 +52,7 @@ class MixtralPolicy(Policy):
|
|||
sp_group = self.shard_config.sequence_parallel_process_group or None
|
||||
sp_partial_derived = sp_mode in ["split_gather", "ring"]
|
||||
tp_size = self.shard_config.tensor_parallel_size
|
||||
use_zbv = self.pipeline_stage_manager is not None and self.pipeline_stage_manager.use_zbv
|
||||
|
||||
# modified for both SP and TP
|
||||
num_q_heads = self.model.config.num_attention_heads
|
||||
|
@ -124,27 +125,43 @@ class MixtralPolicy(Policy):
|
|||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.q_proj",
|
||||
target_module=Linear1D_Col,
|
||||
kwargs={"fp8_communication": self.shard_config.fp8_communication},
|
||||
kwargs={
|
||||
"fp8_communication": self.shard_config.fp8_communication,
|
||||
"use_zbv": use_zbv,
|
||||
},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.k_proj",
|
||||
target_module=Linear1D_Col,
|
||||
kwargs={"fp8_communication": self.shard_config.fp8_communication},
|
||||
kwargs={
|
||||
"fp8_communication": self.shard_config.fp8_communication,
|
||||
"use_zbv": use_zbv,
|
||||
},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.v_proj",
|
||||
target_module=Linear1D_Col,
|
||||
kwargs={"fp8_communication": self.shard_config.fp8_communication},
|
||||
kwargs={
|
||||
"fp8_communication": self.shard_config.fp8_communication,
|
||||
"use_zbv": use_zbv,
|
||||
},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.o_proj",
|
||||
target_module=Linear1D_Row,
|
||||
kwargs={"fp8_communication": self.shard_config.fp8_communication},
|
||||
kwargs={
|
||||
"fp8_communication": self.shard_config.fp8_communication,
|
||||
"use_zbv": use_zbv,
|
||||
},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="block_sparse_moe.gate",
|
||||
target_module=Linear1D_Col,
|
||||
kwargs={"gather_output": True, "fp8_communication": self.shard_config.fp8_communication},
|
||||
kwargs={
|
||||
"gather_output": True,
|
||||
"fp8_communication": self.shard_config.fp8_communication,
|
||||
"use_zbv": use_zbv,
|
||||
},
|
||||
),
|
||||
],
|
||||
)
|
||||
|
@ -179,6 +196,7 @@ class MixtralPolicy(Policy):
|
|||
"tp_group": self.shard_config.tensor_parallel_process_group,
|
||||
"moe_dp_group": self.shard_config.moe_dp_group,
|
||||
"fp8_communication": self.shard_config.fp8_communication,
|
||||
"use_zbv": use_zbv,
|
||||
},
|
||||
)
|
||||
],
|
||||
|
@ -313,6 +331,7 @@ class MixtralModelPolicy(MixtralPolicy):
|
|||
class MixtralForCausalLMPolicy(MixtralPolicy):
|
||||
def module_policy(self):
|
||||
policy = super().module_policy()
|
||||
use_zbv = self.pipeline_stage_manager is not None and self.pipeline_stage_manager.use_zbv
|
||||
# TODO: assign pg mesh from plugin to all modules
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
# add a new item for causal lm
|
||||
|
@ -322,9 +341,13 @@ class MixtralForCausalLMPolicy(MixtralPolicy):
|
|||
SubModuleReplacementDescription(
|
||||
suffix="lm_head",
|
||||
target_module=Linear1D_Col,
|
||||
kwargs=dict(gather_output=True, fp8_communication=self.shard_config.fp8_communication),
|
||||
kwargs=dict(
|
||||
gather_output=True,
|
||||
fp8_communication=self.shard_config.fp8_communication,
|
||||
use_zbv=use_zbv,
|
||||
),
|
||||
)
|
||||
]
|
||||
],
|
||||
)
|
||||
}
|
||||
policy.update(new_item)
|
||||
|
@ -343,7 +366,9 @@ class MixtralForCausalLMPolicy(MixtralPolicy):
|
|||
"""Get pipeline layers for current stage."""
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
held_layers = super().get_held_layers()
|
||||
if stage_manager.is_last_stage():
|
||||
if stage_manager.use_zbv and stage_manager.is_first_stage(ignore_chunk=True):
|
||||
held_layers.append(self.model.lm_head)
|
||||
elif stage_manager.is_last_stage(ignore_chunk=True):
|
||||
held_layers.append(self.model.lm_head)
|
||||
return held_layers
|
||||
|
||||
|
@ -369,6 +394,7 @@ class MixtralForSequenceClassificationPolicy(MixtralPolicy):
|
|||
from transformers import MixtralForSequenceClassification
|
||||
|
||||
policy = super().module_policy()
|
||||
use_zbv = self.pipeline_stage_manager is not None and self.pipeline_stage_manager.use_zbv
|
||||
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
# add a new item for sequence classification
|
||||
|
@ -378,7 +404,11 @@ class MixtralForSequenceClassificationPolicy(MixtralPolicy):
|
|||
SubModuleReplacementDescription(
|
||||
suffix="score",
|
||||
target_module=Linear1D_Col,
|
||||
kwargs=dict(gather_output=True, fp8_communication=self.shard_config.fp8_communication),
|
||||
kwargs=dict(
|
||||
gather_output=True,
|
||||
fp8_communication=self.shard_config.fp8_communication,
|
||||
use_zbv=use_zbv,
|
||||
),
|
||||
)
|
||||
]
|
||||
)
|
||||
|
|
|
@ -21,6 +21,7 @@ from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, TorchF
|
|||
from colossalai.cluster import DistCoordinator
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.pipeline.schedule.v_schedule import PipelineGraph
|
||||
from colossalai.shardformer import PipelineGradientCheckpointConfig
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
|
@ -39,6 +40,7 @@ MODEL_CONFIGS = {
|
|||
),
|
||||
"5b": LlamaConfig(max_position_embeddings=4096, num_key_value_heads=8),
|
||||
"7b": LlamaConfig(max_position_embeddings=4096),
|
||||
# "7b": LlamaConfig(num_hidden_layers=4, max_position_embeddings=4096),
|
||||
"13b": LlamaConfig(
|
||||
hidden_size=5120,
|
||||
intermediate_size=13824,
|
||||
|
@ -91,7 +93,7 @@ def main():
|
|||
parser.add_argument("--zero", type=int, default=0, help="Zero Stage when hybrid plugin is enabled")
|
||||
parser.add_argument("--custom-ckpt", action="store_true", help="Customize checkpoint", default=False)
|
||||
|
||||
parser.add_argument("--pp_style", default="1f1b", choices=["1f1b", "interleaved"])
|
||||
parser.add_argument("--pp_style", default="1f1b", choices=["1f1b", "interleaved", "zbv"])
|
||||
parser.add_argument("--n_chunks", default=1, help="number of model chunks", type=eval)
|
||||
parser.add_argument("--profile", action="store_true", help="Profile the code")
|
||||
parser.add_argument(
|
||||
|
@ -106,6 +108,7 @@ def main():
|
|||
parser.add_argument("--no_cache", action="store_true")
|
||||
parser.add_argument("--use_fp8_comm", action="store_true", default=False, help="for using fp8 during communication")
|
||||
parser.add_argument("--use_fp8", action="store_true", default=False, help="for using fp8 linear")
|
||||
parser.add_argument("--overlap_p2p", action="store_true", default=True, help="for using overlap p2p")
|
||||
parser.add_argument("--overlap_allgather", action="store_true")
|
||||
parser.add_argument(
|
||||
"--sp_mode",
|
||||
|
@ -126,9 +129,12 @@ def main():
|
|||
{
|
||||
"gradient_checkpoint_config": PipelineGradientCheckpointConfig(
|
||||
num_ckpt_layers_per_stage=[19, 19, 19, 13],
|
||||
# num_ckpt_layers_per_stage=[48, 48, 48, 48],
|
||||
),
|
||||
"num_layers_per_stage": [19, 20, 20, 21],
|
||||
"pp_style": "interleaved",
|
||||
# "num_layers_per_stage": [48, 48, 48, 48],
|
||||
# "pp_style": "interleaved",
|
||||
"pp_style": "1f1b",
|
||||
}
|
||||
if args.custom_ckpt
|
||||
else {}
|
||||
|
@ -137,6 +143,11 @@ def main():
|
|||
# ==============================
|
||||
# Initialize Booster
|
||||
# ==============================
|
||||
if args.config in MODEL_CONFIGS:
|
||||
config = MODEL_CONFIGS[args.config]
|
||||
else:
|
||||
config = AutoConfig.from_pretrained(args.config, trust_remote_code=True)
|
||||
|
||||
use_empty_init = True
|
||||
if args.plugin == "gemini":
|
||||
plugin = GeminiPlugin(
|
||||
|
@ -210,6 +221,24 @@ def main():
|
|||
fp8_communication=args.use_fp8_comm,
|
||||
)
|
||||
elif args.plugin == "3d":
|
||||
if args.pp_style == "zbv":
|
||||
mem_f = 34 * config.hidden_size + 5 * config.num_attention_heads * args.max_length
|
||||
mem_w = -32 * config.hidden_size
|
||||
mem_b = -mem_w - mem_f
|
||||
scheduler_nodes = PipelineGraph(
|
||||
n_stage=args.pp,
|
||||
n_micro=args.batch_size // args.mbs,
|
||||
f_cost=1000,
|
||||
b_cost=1000,
|
||||
w_cost=1000,
|
||||
c_cost=1,
|
||||
f_mem=mem_f * 1.5,
|
||||
b_mem=mem_b * 1.5,
|
||||
w_mem=mem_w * 1.5,
|
||||
).get_v_schedule()
|
||||
else:
|
||||
scheduler_nodes = None
|
||||
|
||||
plugin = HybridParallelPlugin(
|
||||
tp_size=args.tp,
|
||||
pp_size=args.pp,
|
||||
|
@ -227,6 +256,7 @@ def main():
|
|||
overlap_allgather=args.overlap_allgather,
|
||||
use_fp8=args.use_fp8,
|
||||
fp8_communication=args.use_fp8_comm,
|
||||
scheduler_nodes=scheduler_nodes,
|
||||
**hybrid_kwargs,
|
||||
)
|
||||
elif args.plugin == "3d_cpu":
|
||||
|
@ -242,7 +272,7 @@ def main():
|
|||
microbatch_size=args.mbs,
|
||||
initial_scale=2**8,
|
||||
precision="bf16",
|
||||
overlap_p2p=args.overlap,
|
||||
overlap_p2p=args.overlap_p2p,
|
||||
use_fp8=args.use_fp8,
|
||||
fp8_communication=args.use_fp8_comm,
|
||||
)
|
||||
|
@ -260,6 +290,7 @@ def main():
|
|||
config = MODEL_CONFIGS[args.config]
|
||||
else:
|
||||
config = AutoConfig.from_pretrained(args.config, trust_remote_code=True)
|
||||
|
||||
torch.cuda.manual_seed(42)
|
||||
dataset = RandomDataset(
|
||||
num_samples=args.batch_size * args.num_steps * dp_size, max_length=args.max_length, vocab_size=config.vocab_size
|
||||
|
@ -319,7 +350,7 @@ def main():
|
|||
args.profile,
|
||||
args.ignore_steps,
|
||||
1, # avoid creating massive log files
|
||||
save_dir=f"profile/{time.strftime('%H:%M', time.localtime())}-{args.plugin}-llama-{args.config}",
|
||||
save_dir=f"./profile/{time.strftime('%H:%M', time.localtime())}-{args.plugin}-llama-{args.config}",
|
||||
nsys=args.nsys,
|
||||
) as prof:
|
||||
if isinstance(plugin, HybridParallelPlugin) and args.pp > 1:
|
||||
|
@ -334,8 +365,12 @@ def main():
|
|||
return_loss=True,
|
||||
)
|
||||
loss = outputs["loss"]
|
||||
if dist.get_rank() == dist.get_world_size() - 1:
|
||||
print(f"Step {step} loss: {loss}")
|
||||
if args.pp_style == "zbv":
|
||||
if coordinator.is_master():
|
||||
print(f"Step {step} loss: {loss}")
|
||||
else:
|
||||
if coordinator.is_last_process():
|
||||
print(f"Step {step} loss: {loss}")
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
|
|
|
@ -11,6 +11,7 @@ from data_utils import RandomDataset
|
|||
from model_utils import format_numel_str, get_model_numel
|
||||
from performance_evaluator import PerformanceEvaluator, get_profile_context
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoConfig
|
||||
from transformers.models.mixtral import MixtralConfig, MixtralForCausalLM
|
||||
|
||||
import colossalai
|
||||
|
@ -20,6 +21,7 @@ from colossalai.booster.plugin import MoeHybridParallelPlugin
|
|||
from colossalai.cluster import DistCoordinator
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.pipeline.schedule.v_schedule import PipelineGraph
|
||||
from colossalai.shardformer import PipelineGradientCheckpointConfig
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
|
@ -85,7 +87,7 @@ def main():
|
|||
parser.add_argument("--zero", type=int, default=1, help="Zero Stage when hybrid plugin is enabled")
|
||||
parser.add_argument("--custom-ckpt", action="store_true", help="Customize checkpoint", default=False)
|
||||
|
||||
parser.add_argument("--pp_style", default="1f1b", choices=["1f1b", "interleaved"])
|
||||
parser.add_argument("--pp_style", default="1f1b", choices=["1f1b", "interleaved", "zbv"])
|
||||
parser.add_argument("--n_chunks", default=1, help="number of model chunks", type=eval)
|
||||
parser.add_argument("--profile", action="store_true", help="Profile the code")
|
||||
parser.add_argument(
|
||||
|
@ -120,7 +122,7 @@ def main():
|
|||
num_ckpt_layers_per_stage=[19, 19, 19, 13],
|
||||
),
|
||||
"num_layers_per_stage": [19, 20, 20, 21],
|
||||
"pp_style": "interleaved",
|
||||
# "pp_style": "interleaved",
|
||||
}
|
||||
if args.custom_ckpt
|
||||
else {}
|
||||
|
@ -129,7 +131,29 @@ def main():
|
|||
# ==============================
|
||||
# Initialize Booster
|
||||
# ==============================
|
||||
if args.config in MODEL_CONFIGS:
|
||||
config = MODEL_CONFIGS[args.config]
|
||||
else:
|
||||
config = AutoConfig.from_pretrained(args.config, trust_remote_code=True)
|
||||
|
||||
if args.plugin == "3d":
|
||||
if args.pp_style == "zbv":
|
||||
mem_f = 34 * config.hidden_size + 5 * config.num_attention_heads * args.max_length
|
||||
mem_w = -32 * config.hidden_size
|
||||
mem_b = -mem_w - mem_f
|
||||
scheduler_nodes = PipelineGraph(
|
||||
n_stage=args.pp,
|
||||
n_micro=args.batch_size // args.mbs,
|
||||
f_cost=1000,
|
||||
b_cost=1000,
|
||||
w_cost=1000,
|
||||
c_cost=1,
|
||||
f_mem=mem_f,
|
||||
b_mem=mem_b,
|
||||
w_mem=mem_w,
|
||||
).get_v_schedule()
|
||||
else:
|
||||
scheduler_nodes = None
|
||||
plugin = MoeHybridParallelPlugin(
|
||||
ep_size=args.ep,
|
||||
tp_size=args.tp,
|
||||
|
@ -143,11 +167,13 @@ def main():
|
|||
enable_fused_normalization=torch.cuda.is_available(),
|
||||
enable_flash_attention=args.xformers,
|
||||
microbatch_size=args.mbs,
|
||||
num_microbatches=args.batch_size // args.mbs,
|
||||
precision="bf16",
|
||||
enable_metadata_cache=not args.no_cache,
|
||||
overlap_allgather=args.overlap_allgather,
|
||||
use_fp8=args.use_fp8,
|
||||
fp8_communication=args.use_fp8_comm,
|
||||
scheduler_nodes=scheduler_nodes,
|
||||
**hybrid_kwargs,
|
||||
)
|
||||
else:
|
||||
|
@ -183,8 +209,10 @@ def main():
|
|||
with init_ctx:
|
||||
model = MixtralForCausalLM(config=config).to(torch.bfloat16)
|
||||
|
||||
# if args.grad_checkpoint:
|
||||
# model.gradient_checkpointing_enable()
|
||||
if args.grad_checkpoint:
|
||||
model.gradient_checkpointing_enable()
|
||||
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})
|
||||
|
||||
model_numel = get_model_numel(model)
|
||||
coordinator.print_on_master(f"Model params: {format_numel_str(model_numel)}")
|
||||
|
@ -229,8 +257,12 @@ def main():
|
|||
return_loss=True,
|
||||
)
|
||||
loss = outputs["loss"]
|
||||
if dist.get_rank() == dist.get_world_size() - 1:
|
||||
print(f"Step {step} loss: {loss}")
|
||||
if args.pp_style == "zbv":
|
||||
if dist.get_rank() == 0:
|
||||
print(f"Step {step} loss: {loss}")
|
||||
else:
|
||||
if dist.get_rank() == dist.get_world_size() - 1:
|
||||
print(f"Step {step} loss: {loss}")
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
|
|
|
@ -21,11 +21,16 @@ def divide(x: float, y: float) -> float:
|
|||
def all_reduce_mean(x: float, world_size: int) -> float:
|
||||
if world_size == 1:
|
||||
return x
|
||||
# BUG: RuntimeError: Invalid scalar type when use dist.all_reduce(tensor, group=gloo_group)
|
||||
# # Use CPU tensor to avoid OOM/weird NCCl error
|
||||
# gloo_group = dist.new_group(backend="gloo")
|
||||
# tensor = torch.tensor([x], device="cpu")
|
||||
# dist.all_reduce(tensor, group=gloo_group)
|
||||
# tensor = tensor / world_size
|
||||
# return tensor.item()
|
||||
|
||||
# Use CPU tensor to avoid OOM/weird NCCl error
|
||||
gloo_group = dist.new_group(backend="gloo")
|
||||
tensor = torch.tensor([x], device="cpu")
|
||||
dist.all_reduce(tensor, group=gloo_group)
|
||||
tensor = torch.tensor([x], device=torch.cuda.current_device(), dtype=torch.float)
|
||||
dist.all_reduce(tensor)
|
||||
tensor = tensor / world_size
|
||||
return tensor.item()
|
||||
|
||||
|
|
|
@ -8,12 +8,14 @@ import torch
|
|||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.testing import assert_close
|
||||
from transformers.models.llama.configuration_llama import LlamaConfig
|
||||
from transformers.models.llama.modeling_llama import LlamaModel
|
||||
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
|
||||
from transformers.models.mixtral.modeling_mixtral import MixtralModel
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster.booster import Booster
|
||||
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
||||
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import HybridParallelPlugin, MoeHybridParallelPlugin
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.interface import OptimizerWrapper
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
|
@ -756,10 +758,11 @@ def run_with_hybridplugin(test_config):
|
|||
@parameterize(
|
||||
"config",
|
||||
[
|
||||
(0, 1, 4, 1, 1),
|
||||
(1, 2, 2, 1, 1),
|
||||
(1, 2, 1, 2, 1),
|
||||
(1, 2, 1, 1, 2),
|
||||
# (0, 1, 4, 1, 1),
|
||||
# (1, 2, 2, 1, 1),
|
||||
(1, 1, 2, 2, 1),
|
||||
# (1, 2, 1, 2, 1),
|
||||
# (1, 2, 1, 1, 2),
|
||||
],
|
||||
)
|
||||
def run_with_booster_moehybridplugin(config: Tuple[int, ...]):
|
||||
|
@ -790,6 +793,8 @@ def run_with_booster_moehybridplugin(config: Tuple[int, ...]):
|
|||
seed_all(10086)
|
||||
|
||||
torch_model = MixtralModel(config).to(dtype).cuda()
|
||||
# TODO: Support MixtralForCausalLM
|
||||
# torch_model = MixtralForCausalLM(config).to(dtype).cuda()
|
||||
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
|
||||
# init schedule
|
||||
h, a, s = config.hidden_size, config.num_attention_heads, 1024
|
||||
|
@ -892,7 +897,7 @@ def run_with_booster_moehybridplugin(config: Tuple[int, ...]):
|
|||
|
||||
# ===================================================================================
|
||||
# run normal model with all dp(different) inputs
|
||||
all_inputs = [torch.empty_like(input_embeddings) for _ in range(dp_size)]
|
||||
all_inputs = [input_embeddings.clone() for _ in range(dp_size)]
|
||||
dist.all_gather(all_inputs, input_embeddings, group=plugin.dp_group)
|
||||
torch_output_sum = 0
|
||||
for input_data_ in all_inputs:
|
||||
|
@ -905,18 +910,177 @@ def run_with_booster_moehybridplugin(config: Tuple[int, ...]):
|
|||
p.grad /= dp_size
|
||||
torch_optimizer.step()
|
||||
torch_optimizer.zero_grad()
|
||||
|
||||
assert_loose_close(parallel_output, torch_output_sum, dtype=dtype)
|
||||
print(f"rank {dist.get_rank()} config {test_config} test passed")
|
||||
clear_layout_converter()
|
||||
Randomizer.reset_index()
|
||||
torch.cuda.empty_cache()
|
||||
clear_layout_converter()
|
||||
Randomizer.reset_index()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@parameterize(
|
||||
"config",
|
||||
[
|
||||
(1, 2, 2, 1), # Pass
|
||||
# TODO: only support pp + tp accleration; Will support fully pp and None tp Hybrid in furture;
|
||||
# (0, 4, 1, 1),
|
||||
# (1, 2, 1, 2),
|
||||
# (1, 1, 2, 2),
|
||||
],
|
||||
)
|
||||
def run_with_booster_hybridplugin(config: Tuple[int, ...]):
|
||||
stage, pp_size, tp_size, sp_size = config
|
||||
num_microbatches = pp_size
|
||||
dist.get_world_size()
|
||||
rank = dist.get_rank()
|
||||
dtype, precision = torch.float16, "fp16"
|
||||
torch.cuda.set_device(dist.get_rank())
|
||||
|
||||
########
|
||||
# init base model
|
||||
########
|
||||
assert pp_size <= NUM_LAYERS, "pp_size should be less than or equal to NUM_LAYERS"
|
||||
config = LlamaConfig(
|
||||
hidden_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS,
|
||||
intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
|
||||
num_hidden_layers=NUM_LAYERS,
|
||||
num_attention_heads=NUM_HEADS,
|
||||
num_key_value_heads=NUM_HEADS,
|
||||
attn_implementation="flash_attention_2",
|
||||
)
|
||||
|
||||
# init model with the same seed
|
||||
seed_all(10086)
|
||||
|
||||
torch_model = LlamaModel(config).to(dtype).cuda()
|
||||
# TODO: Support MixtralForCausalLM
|
||||
# torch_model = MixtralForCausalLM(config).to(dtype).cuda()
|
||||
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
|
||||
# init schedule
|
||||
h, a, s = config.hidden_size, config.num_attention_heads, 1024
|
||||
mem_f = 34 * h + 5 * a * s
|
||||
mem_w = -32 * h
|
||||
mem_b = -mem_w - mem_f
|
||||
graph = PipelineGraph(
|
||||
n_stage=pp_size,
|
||||
n_micro=num_microbatches,
|
||||
f_cost=1,
|
||||
b_cost=1,
|
||||
w_cost=1,
|
||||
c_cost=1,
|
||||
f_mem=mem_f,
|
||||
b_mem=mem_b,
|
||||
w_mem=mem_w,
|
||||
)
|
||||
|
||||
zbv_schedule = graph.get_v_schedule()
|
||||
|
||||
# init HybridParallelPlugin
|
||||
plugin = HybridParallelPlugin(
|
||||
pp_size=pp_size,
|
||||
num_microbatches=pp_size,
|
||||
tp_size=tp_size,
|
||||
sp_size=sp_size,
|
||||
zero_stage=stage,
|
||||
enable_sequence_parallelism=sp_size > 1,
|
||||
sequence_parallelism_mode="all_to_all" if sp_size > 1 else None,
|
||||
overlap_communication=False,
|
||||
initial_scale=1,
|
||||
precision=precision,
|
||||
find_unused_parameters=True,
|
||||
pp_style="zbv",
|
||||
scheduler_nodes=zbv_schedule,
|
||||
num_model_chunks=2,
|
||||
)
|
||||
|
||||
dp_size = plugin.dp_size
|
||||
|
||||
booster = Booster(plugin=plugin)
|
||||
|
||||
########
|
||||
# init pp model
|
||||
########
|
||||
|
||||
parallel_model = deepcopy(torch_model)
|
||||
parallel_optimizer = torch.optim.SGD(parallel_model.parameters(), lr=1)
|
||||
parallel_model, parallel_optimizer, _, _, _ = booster.boost(parallel_model, parallel_optimizer)
|
||||
# create different input along dp axis
|
||||
seed_all(1453 + rank)
|
||||
|
||||
torch_model.train()
|
||||
parallel_model.train()
|
||||
for _ in range(2):
|
||||
# gen random input
|
||||
input_embeddings = torch.rand(
|
||||
NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
|
||||
).cuda()
|
||||
dist.all_reduce(
|
||||
input_embeddings, group=plugin.pp_group
|
||||
) # pp inputs except the first stage doesn't matter, but need to be replicate for torch model check
|
||||
|
||||
dist.all_reduce(input_embeddings, group=plugin.tp_group) # tp group duplicate input
|
||||
dist.all_reduce(input_embeddings, group=plugin.sp_group) # sp group duplicate input
|
||||
|
||||
# run the model with hybrid parallel
|
||||
if booster.plugin.stage_manager is not None:
|
||||
# for test with pp
|
||||
data_iter = iter([{"inputs_embeds": input_embeddings}])
|
||||
sharded_output = booster.execute_pipeline(
|
||||
data_iter,
|
||||
parallel_model,
|
||||
lambda x, y: x.last_hidden_state.mean(),
|
||||
parallel_optimizer,
|
||||
return_loss=True,
|
||||
return_outputs=True,
|
||||
)
|
||||
# stage 0 chunk 0
|
||||
parallel_output = None
|
||||
if (
|
||||
booster.plugin.stage_manager.is_first_stage(ignore_chunk=True)
|
||||
and rank == dist.get_process_group_ranks(plugin.pp_group)[0]
|
||||
):
|
||||
parallel_output = sharded_output["loss"]
|
||||
else:
|
||||
parallel_output = torch.tensor(12345.0, device="cuda")
|
||||
# broadcast along pp axis
|
||||
dist.broadcast(parallel_output, src=dist.get_process_group_ranks(plugin.pp_group)[0], group=plugin.pp_group)
|
||||
|
||||
else:
|
||||
# for test without pp
|
||||
parallel_output = parallel_model(inputs_embeds=input_embeddings.to(dtype)).last_hidden_state.mean()
|
||||
parallel_optimizer.backward(parallel_output)
|
||||
parallel_optimizer.step()
|
||||
parallel_optimizer.zero_grad()
|
||||
dist.all_reduce(parallel_output, group=plugin.dp_group)
|
||||
|
||||
# ===================================================================================
|
||||
# run normal model with all dp(different) inputs
|
||||
all_inputs = [input_embeddings.clone() for _ in range(dp_size)]
|
||||
dist.all_gather(all_inputs, input_embeddings, group=plugin.dp_group)
|
||||
torch_output_sum = 0
|
||||
for input_data_ in all_inputs:
|
||||
torch_output = torch_model(inputs_embeds=input_data_.to(dtype)).last_hidden_state.mean()
|
||||
torch_output.backward()
|
||||
torch_output_sum += torch_output.detach()
|
||||
# avg dp grads follows zero optimizer
|
||||
for p in torch_model.parameters():
|
||||
if p.grad is not None:
|
||||
p.grad /= dp_size
|
||||
torch_optimizer.step()
|
||||
torch_optimizer.zero_grad()
|
||||
|
||||
assert_loose_close(parallel_output, torch_output_sum, dtype=dtype)
|
||||
print(f"rank {dist.get_rank()} pp_size:{pp_size}, tp_size {tp_size}, sp_size :{sp_size} test passed")
|
||||
clear_layout_converter()
|
||||
Randomizer.reset_index()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
# run_fwd_bwd_vschedule_with_optim()
|
||||
run_with_booster_moehybridplugin()
|
||||
run_with_booster_hybridplugin()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
@ -928,5 +1092,6 @@ def test_pp():
|
|||
)
|
||||
|
||||
|
||||
# python -m pytest -s tests/test_pipeline/test_schedule/test_zerobubble_pp.py
|
||||
if __name__ == "__main__":
|
||||
test_pp()
|
||||
|
|
|
@ -8,7 +8,8 @@ from torch.testing import assert_close
|
|||
|
||||
import colossalai
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row
|
||||
from colossalai.pipeline.weight_grad_store import WeightGradStore
|
||||
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row, LinearWithGradAccum
|
||||
from colossalai.tensor.d_tensor import is_distributed_tensor
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
@ -117,6 +118,93 @@ def check_linear_1d_row(lazy_init: bool, seq_parallel_mode: bool):
|
|||
assert_close(x_for_unshard.grad, x_for_shard.grad)
|
||||
|
||||
|
||||
def check_linear_without_weight_grad_store(lazy_init: bool, seq_parallel_mode: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
linear = nn.Linear(32, 128).cuda()
|
||||
with ctx:
|
||||
linear_copy = nn.Linear(32, 128).cuda()
|
||||
linear_base = LinearWithGradAccum.from_native_module(
|
||||
linear_copy, parallel_input=False, seq_parallel_mode=seq_parallel_mode, use_zbv=False
|
||||
)
|
||||
assert linear_base.weight.shape == torch.Size([128, 32])
|
||||
assert linear_base.bias.shape == torch.Size([128])
|
||||
assert linear_copy.weight is linear_base.weight
|
||||
assert linear_copy.bias is linear_base.bias
|
||||
|
||||
linear.load_state_dict(linear_base.state_dict())
|
||||
linear_base.load_state_dict(linear.state_dict())
|
||||
|
||||
# check computation correctness
|
||||
# [batch_size, seq_len, hidden_size]
|
||||
x = torch.rand(2, 4, 32).cuda()
|
||||
x_for_unshard = x.expand_as(x.clone())
|
||||
x_for_unshard.requires_grad_(True)
|
||||
x_for_shard = x.expand_as(x.clone())
|
||||
x_for_shard.requires_grad_(True)
|
||||
|
||||
# run forward
|
||||
out = linear(x_for_unshard)
|
||||
gather_out = linear_base(x_for_shard)
|
||||
assert_close(out, gather_out)
|
||||
|
||||
# check backward correctness
|
||||
out.sum().backward()
|
||||
gather_out.sum().backward()
|
||||
assert_close(linear.weight.grad, linear_base.weight.grad)
|
||||
# check the input gradients
|
||||
assert x_for_shard.grad is not None
|
||||
assert x_for_unshard.grad is not None
|
||||
assert_close(x_for_unshard.grad, x_for_shard.grad)
|
||||
|
||||
|
||||
def check_linear_with_weight_grad_store(lazy_init: bool, seq_parallel_mode: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
linear = nn.Linear(32, 128).cuda()
|
||||
with ctx:
|
||||
linear_copy = nn.Linear(32, 128).cuda()
|
||||
linear_base = LinearWithGradAccum.from_native_module(
|
||||
linear_copy, parallel_input=False, seq_parallel_mode=seq_parallel_mode, use_zbv=True
|
||||
)
|
||||
assert linear_base.weight.shape == torch.Size([128, 32])
|
||||
assert linear_base.bias.shape == torch.Size([128])
|
||||
assert linear_copy.weight is linear_base.weight
|
||||
assert linear_copy.bias is linear_base.bias
|
||||
|
||||
linear.load_state_dict(linear_base.state_dict())
|
||||
linear_base.load_state_dict(linear.state_dict())
|
||||
|
||||
# check computation correctness
|
||||
# [batch_size, seq_len, hidden_size]
|
||||
x = torch.rand(2, 4, 32).cuda()
|
||||
x_for_unshard = x.expand_as(x.clone())
|
||||
x_for_unshard.requires_grad_(True)
|
||||
x_for_shard = x.expand_as(x.clone())
|
||||
x_for_shard.requires_grad_(True)
|
||||
|
||||
# run forward
|
||||
out = linear(x_for_unshard)
|
||||
gather_out = linear_base(x_for_shard)
|
||||
assert_close(out, gather_out)
|
||||
|
||||
# check backward correctness
|
||||
out.sum().backward()
|
||||
gather_out.sum().backward()
|
||||
|
||||
# Weight grad is None before we do WeightGradStore pop
|
||||
assert linear_base.weight.grad is None
|
||||
# after WeightGradStore pop (dw computation complete), we assert weight grad
|
||||
WeightGradStore.flush(chunk=0) # flush buffer to chunk 0 Queue
|
||||
WeightGradStore.pop(chunk=0)
|
||||
assert_close(linear.weight.grad, linear_base.weight.grad)
|
||||
|
||||
# check the input gradients
|
||||
assert x_for_shard.grad is not None
|
||||
assert x_for_unshard.grad is not None
|
||||
assert_close(x_for_unshard.grad, x_for_shard.grad)
|
||||
|
||||
|
||||
def check_linear_col_plus_row(lazy_init: bool, seq_parallel_mode: bool, overlap: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
|
@ -182,6 +270,8 @@ def run_dist_linear_test(lazy_init, seq_parallel_mode, overlap):
|
|||
check_linear_1d_col(lazy_init, seq_parallel_mode, overlap)
|
||||
check_linear_1d_row(lazy_init, seq_parallel_mode)
|
||||
check_linear_col_plus_row(lazy_init, seq_parallel_mode, overlap)
|
||||
check_linear_without_weight_grad_store(lazy_init, seq_parallel_mode)
|
||||
check_linear_with_weight_grad_store(lazy_init, seq_parallel_mode)
|
||||
|
||||
|
||||
def check_dist_linear(rank, world_size, port):
|
||||
|
|
|
@ -277,32 +277,33 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
|||
"precision": "fp16",
|
||||
"initial_scale": 1,
|
||||
},
|
||||
{
|
||||
"tp_size": 2,
|
||||
"pp_size": 2,
|
||||
"pp_style": "zbv",
|
||||
"num_model_chunks": 2,
|
||||
"num_microbatches": 4,
|
||||
"enable_all_optimization": False,
|
||||
"precision": "fp16",
|
||||
"zero_stage": 0,
|
||||
"initial_scale": 1,
|
||||
"enable_gradient_checkpointing": True,
|
||||
"parallel_output": False,
|
||||
},
|
||||
{
|
||||
"tp_size": 2,
|
||||
"pp_size": 2,
|
||||
"pp_style": "zbv",
|
||||
"num_model_chunks": 2,
|
||||
"num_microbatches": 4,
|
||||
"enable_all_optimization": False,
|
||||
"precision": "fp16",
|
||||
"zero_stage": 1,
|
||||
"initial_scale": 1,
|
||||
"enable_gradient_checkpointing": True,
|
||||
"parallel_output": False,
|
||||
},
|
||||
# # TODO: assert layer error
|
||||
# {
|
||||
# "tp_size": 2,
|
||||
# "pp_size": 2,
|
||||
# "pp_style": "zbv",
|
||||
# "num_model_chunks": 2,
|
||||
# "num_microbatches": 4,
|
||||
# "enable_all_optimization": False,
|
||||
# "precision": "fp16",
|
||||
# "zero_stage": 0,
|
||||
# "initial_scale": 1,
|
||||
# "enable_gradient_checkpointing": True,
|
||||
# "parallel_output": False,
|
||||
# },
|
||||
# {
|
||||
# "tp_size": 2,
|
||||
# "pp_size": 2,
|
||||
# "pp_style": "zbv",
|
||||
# "num_model_chunks": 2,
|
||||
# "num_microbatches": 4,
|
||||
# "enable_all_optimization": False,
|
||||
# "precision": "fp16",
|
||||
# "zero_stage": 1,
|
||||
# "initial_scale": 1,
|
||||
# "enable_gradient_checkpointing": True,
|
||||
# "parallel_output": False,
|
||||
# },
|
||||
],
|
||||
)
|
||||
def run_llama_test(test_config):
|
||||
|
|
Loading…
Reference in New Issue