Browse Source

[tensor] added linear implementation for the new sharding spec (#1416)

* [tensor] added linear implementation for the new sharding spec

* polish code
pull/1439/head
Frank Lee 2 years ago committed by GitHub
parent
commit
ae1b58cd16
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 80
      colossalai/nn/_ops/linear.py
  2. 7
      colossalai/tensor/sharding_spec.py
  3. 236
      tests/test_tensor/test_sharded_linear.py

80
colossalai/nn/_ops/linear.py

@ -4,6 +4,8 @@ from ._utils import GeneralTensor, convert_to_colo_tensor
from colossalai.tensor.op_wrapper import colo_op_impl
from ._utils import reduce_input, reduce_grad
from colossalai.tensor import ComputePattern, ComputeSpec, ColoTensor, ShardSpec, ReplicaSpec, ColoTensorSpec
from colossalai.tensor.sharding_spec import ShardingSpec
from copy import deepcopy
def colo_linear_1drow(input_tensor: ColoTensor, weight: ColoTensor, bias: Optional[ColoTensor]) -> 'ColoTensor':
@ -86,8 +88,84 @@ def colo_linear_imp(input_tensor: GeneralTensor,
return ret_tensor
def _new_colo_linear_imp(input_tensor: GeneralTensor,
weight: GeneralTensor,
bias: Optional[GeneralTensor] = None) -> 'ColoTensor':
"""
A tentative function to compute the distributed linear layer with the latest sharding spec.
This function is subject to future change as the current sharding API is not stable.
"""
# get mesh info
input_sharding_seq = input_tensor.sharding_spec.sharding_sequence
weight_sharding_seq = weight.sharding_spec.sharding_sequence
if bias is not None:
bias_sharding_seq = bias.sharding_spec.sharding_sequence
device_mesh = weight.sharding_spec.device_mesh
pg_axis0 = weight.pg_axis0
pg_axis1 = weight.pg_axis1
# the last dim of input should have the same spec as the first dim of weight
# the weight is transposed, so we look at the second dimension
assert input_sharding_seq[-1] == weight_sharding_seq[1]
if bias is not None:
assert bias_sharding_seq[0] == weight_sharding_seq[0]
# compute the output sharding sequence
# as weight is transposed, so we look at the first dimension
output_shard_seq = input_sharding_seq[:-1] + weight_sharding_seq[:1]
output_shard_seq = deepcopy(output_shard_seq)
# TODO: add reduce grad logic
# handle column and row parallel linear
# by reusing the implementation above
out = F.linear(input_tensor, weight)
# run all reduce if necessary
last_dim_spec = input_sharding_seq[-1]
if last_dim_spec.is_replica:
pass
elif last_dim_spec.shard_list is not None:
for dim in last_dim_spec.shard_list:
if dim == 0:
reduce_input(out, pg_axis0)
elif dim == 1:
reduce_input(out, pg_axis1)
else:
raise RuntimeError("Found invalid sharding axis {dim}, only 0 or 1 is expected")
# add bias
if bias is not None:
out += bias
# convert shard seq to partition dict
output_partition_dict = {}
for index, dim_spec in enumerate(output_shard_seq):
if not dim_spec.is_replica:
if index not in output_partition_dict:
output_partition_dict[index] = []
output_partition_dict[index].extend(dim_spec.shard_list)
entire_shape = out.shape
output_sharding_spec = ShardingSpec(device_mesh, entire_shape, output_partition_dict)
ret_tensor = ColoTensor.from_torch_tensor(out)
setattr(ret_tensor, 'sharding_spec', output_sharding_spec)
return ret_tensor
def _has_sharding_spec(tensor):
"""
A tentative function to check whether the tensor is using the new sharding spec API. We assume that the sharding spec object is
set as the attribute `sharding_spec` on a tensor.
"""
return hasattr(tensor, 'sharding_spec')
@colo_op_impl(F.linear)
def colo_linear(input_tensor: GeneralTensor,
weight: GeneralTensor,
bias: Optional[GeneralTensor] = None) -> 'ColoTensor':
return colo_linear_imp(input_tensor, weight, bias)
if _has_sharding_spec(weight):
return _new_colo_linear_imp(input_tensor, weight, bias)
else:
return colo_linear_imp(input_tensor, weight, bias)

7
colossalai/tensor/sharding_spec.py

@ -17,12 +17,7 @@ class _DimSpec:
self.shard_list = shard_list
def __eq__(self, other):
if dir(self) != dir(other):
return False
for attr in dir(self):
if not attr.startswith('__') and getattr(self, attr) != getattr(other, attr):
return False
return True
return str(self) == str(other)
def __repr__(self):
if self.is_replica:

236
tests/test_tensor/test_sharded_linear.py

@ -0,0 +1,236 @@
from lib2to3 import pgen2
import colossalai
import torch
import pytest
import torch.multiprocessing as mp
import torch.nn.functional as F
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
from functools import partial
from colossalai.device.device_mesh import DeviceMesh
from colossalai.tensor.sharding_spec import ShardingSpec
from colossalai.tensor import ColoTensor, ColoParameter, ProcessGroup
from colossalai.nn._ops._utils import gather_forward_split_backward
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
# create mlp vars
x = ColoTensor.from_torch_tensor(torch.rand(2, 4, 8, requires_grad=True)).cuda()
w = ColoParameter.from_torch_tensor(torch.rand(16, 8, requires_grad=True)).cuda()
b = ColoParameter.from_torch_tensor(torch.rand(16, requires_grad=True)).cuda()
# run normal forward
out = F.linear(x, w, b)
# create mesh meta
# the mesh is in the following topo
# [[0, 1],
# [2, 3]]
physical_mesh_id = torch.arange(0, 4).reshape(2, 2)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
row_id = rank // 2
column_id = rank % 2
# create pg
row_process_group = None
col_process_group = None
row_to_ranks = {0: [0, 1], 1: [2, 3]}
col_to_ranks = {0: [0, 2], 1: [1, 3]}
for idx in range(2):
# row ranks
row_ranks = row_to_ranks[idx]
row_pg = ProcessGroup(ranks=row_ranks, tp_degree=2)
# col ranks
col_ranks = col_to_ranks[idx]
col_pg = ProcessGroup(ranks=col_ranks, tp_degree=2)
if rank in row_ranks:
row_process_group = row_pg
if rank in col_ranks:
col_process_group = col_pg
########################
# RRR x RS0 -> RRS0 #
########################
# w will be transposed in F.linear
x_replica = x.detach().clone()
w_shard = torch.chunk(w.detach().clone(), chunks=2, dim=0)[row_id]
b_shard = torch.chunk(b.detach().clone(), chunks=2, dim=0)[row_id]
# adding sharding spec
x_replica.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={})
w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={0: [0]})
b_shard.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={0: [0]})
# check sharding spec
assert str(x_replica.sharding_spec.sharding_sequence) == "[R, R, R]"
assert str(w_shard.sharding_spec.sharding_sequence) == "[S0, R]"
assert str(b_shard.sharding_spec.sharding_sequence) == "[S0]"
w_shard.pg_axis0 = col_process_group
w_shard.pg_axis1 = row_process_group
out_shard = F.linear(x_replica, w_shard, b_shard)
assert str(out_shard.sharding_spec.sharding_sequence) == "[R, R, S0]"
# each row only has a mini-batch
expected_out_shard = torch.chunk(out, chunks=2, dim=2)[row_id]
assert torch.allclose(out_shard, expected_out_shard)
########################
# S0RR x RS1 -> S0RS1 #
########################
# w will be transposed in F.linear
x_shard = torch.chunk(x.detach().clone(), chunks=2, dim=0)[row_id]
w_shard = torch.chunk(w.detach().clone(), chunks=2, dim=0)[column_id]
b_shard = torch.chunk(b.detach().clone(), chunks=2, dim=0)[column_id]
# adding sharding spec
x_shard.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={0: [0]})
w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={0: [1]})
b_shard.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={0: [1]})
# check sharding spec
assert str(x_shard.sharding_spec.sharding_sequence) == "[S0, R, R]"
assert str(w_shard.sharding_spec.sharding_sequence) == "[S1, R]"
assert str(b_shard.sharding_spec.sharding_sequence) == "[S1]"
w_shard.pg_axis0 = col_process_group
w_shard.pg_axis1 = row_process_group
out_shard = F.linear(x_shard, w_shard, b_shard)
# each row only has a mini-batch
expected_out_shard = torch.chunk(out, chunks=2, dim=0)[row_id]
expected_out_shard = torch.chunk(expected_out_shard, chunks=2, dim=2)[column_id]
assert torch.allclose(out_shard, expected_out_shard)
########################
# S0RS1 x S1R -> S0RR #
########################
# w will be transposed in F.linear
x_shard = torch.chunk(x.clone(), chunks=2, dim=0)[row_id]
x_shard = torch.chunk(x_shard, chunks=2, dim=2)[column_id]
w_shard = torch.chunk(w.clone(), chunks=2, dim=1)[column_id]
b_replica = b.clone()
# adding sharding spec
x_shard.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={0: [0], 2: [1]})
w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={1: [1]})
b_replica.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={})
# check sharding spec
assert str(x_shard.sharding_spec.sharding_sequence) == "[S0, R, S1]"
assert str(w_shard.sharding_spec.sharding_sequence) == "[R, S1]"
assert str(b_replica.sharding_spec.sharding_sequence) == "[R]"
w_shard.pg_axis0 = col_process_group
w_shard.pg_axis1 = row_process_group
out_shard = F.linear(x_shard, w_shard, b_replica)
# each row only has a mini-batch
expected_out_shard = torch.chunk(out, chunks=2, dim=0)[row_id]
assert torch.allclose(out_shard, expected_out_shard)
########################
# RRS0 x S0R -> RRR #
########################
# w will be transposed in F.linear
x_shard = torch.chunk(x.clone(), chunks=2, dim=2)[row_id]
w_shard = torch.chunk(w.clone(), chunks=2, dim=1)[row_id]
b_replica = b.clone()
# adding sharding spec
x_shard.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={2: [0]})
w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={1: [0]})
b_replica.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={})
# check sharding spec
assert str(x_shard.sharding_spec.sharding_sequence) == "[R, R, S0]"
assert str(w_shard.sharding_spec.sharding_sequence) == "[R, S0]"
assert str(b_replica.sharding_spec.sharding_sequence) == "[R]"
w_shard.pg_axis0 = col_process_group
w_shard.pg_axis1 = row_process_group
out_shard = F.linear(x_shard, w_shard, b_replica)
# each row only has a mini-batch
expected_out_shard = out
assert torch.allclose(out_shard, expected_out_shard)
########################
# RS0S1 x S1R -> RS0R #
########################
# w will be transposed in F.linear
x_shard = torch.chunk(x.clone(), chunks=2, dim=1)[row_id]
x_shard = torch.chunk(x_shard, chunks=2, dim=2)[column_id]
w_shard = torch.chunk(w.clone(), chunks=2, dim=1)[column_id]
b_replica = b.clone()
# adding sharding spec
x_shard.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={1: [0], 2: [1]})
w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={1: [1]})
b_replica.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={})
# check sharding spec
assert str(x_shard.sharding_spec.sharding_sequence) == "[R, S0, S1]"
assert str(w_shard.sharding_spec.sharding_sequence) == "[R, S1]"
assert str(b_replica.sharding_spec.sharding_sequence) == "[R]"
w_shard.pg_axis0 = col_process_group
w_shard.pg_axis1 = row_process_group
out_shard = F.linear(x_shard, w_shard, b_replica)
# each row only has a mini-batch
expected_out_shard = torch.chunk(out, chunks=2, dim=1)[row_id]
assert torch.allclose(out_shard, expected_out_shard)
########################
# RRS0 x S0S1 -> RRS1 #
########################
# w will be transposed in F.linear
x_shard = torch.chunk(x.clone(), chunks=2, dim=2)[row_id]
w_shard = torch.chunk(w.clone(), chunks=2, dim=1)[row_id]
w_shard = torch.chunk(w_shard, chunks=2, dim=0)[column_id]
b_shard = torch.chunk(b.clone(), chunks=2, dim=0)[column_id]
# adding sharding spec
x_shard.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={2: [0]})
w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={0: [1], 1: [0]})
b_shard.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={0: [1]})
# check sharding spec
assert str(x_shard.sharding_spec.sharding_sequence) == "[R, R, S0]"
assert str(w_shard.sharding_spec.sharding_sequence) == "[S1, S0]"
assert str(b_shard.sharding_spec.sharding_sequence) == "[S1]"
w_shard.pg_axis0 = col_process_group
w_shard.pg_axis1 = row_process_group
out_shard = F.linear(x_shard, w_shard, b_shard)
# each row only has a mini-batch
expected_out_shard = torch.chunk(out, chunks=2, dim=2)[column_id]
assert torch.allclose(out_shard, expected_out_shard)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [4])
@rerun_if_address_is_in_use()
def test_sharded_mlp(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_sharded_mlp(4)
Loading…
Cancel
Save