mirror of https://github.com/hpcaitech/ColossalAI
[WIP] Applying ColoTensor on TP-1D-row Linear. (#831)
* revert zero tensors back * [tensor] init row 1d linearpull/835/head
parent
595bedf767
commit
ac88de6dfc
|
@ -19,12 +19,18 @@ def colo_linear(types, args, kwargs, pg):
|
||||||
bias = None
|
bias = None
|
||||||
else:
|
else:
|
||||||
bias = kwargs.get('bias', None)
|
bias = kwargs.get('bias', None)
|
||||||
|
|
||||||
if isinstance(bias, ColoTensor):
|
if isinstance(bias, ColoTensor):
|
||||||
bias = bias.torch_tensor()
|
bias = bias.torch_tensor()
|
||||||
|
|
||||||
# Add communication logic before and after linear call.
|
# Add communication logic before and after linear call.
|
||||||
if isinstance(weight, ColoTensor):
|
if isinstance(weight, ColoTensor):
|
||||||
return torch.nn.functional.linear(input_tensor, weight.torch_tensor(), bias)
|
if weight.shard_spec == None:
|
||||||
|
return torch.nn.functional.linear(input_tensor, weight.torch_tensor(), bias)
|
||||||
|
elif weight.shard_spec == '1Drow':
|
||||||
|
# TODO(jzy): implement 1Drow TP linear here.
|
||||||
|
raise NotImplementedError
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
else:
|
else:
|
||||||
return torch.nn.functional.linear(input_tensor, weight, bias)
|
return torch.nn.functional.linear(input_tensor, weight, bias)
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
import torch
|
import torch
|
||||||
from .op_wrapper import _COLOSSAL_OPS
|
from .op_wrapper import _COLOSSAL_OPS
|
||||||
from typing import Tuple
|
from typing import Tuple, Optional
|
||||||
|
|
||||||
|
|
||||||
class ColoTensor(object):
|
class ColoTensor(object):
|
||||||
|
@ -21,20 +21,35 @@ class ColoTensor(object):
|
||||||
requires_grad=False,
|
requires_grad=False,
|
||||||
pin_memory=False,
|
pin_memory=False,
|
||||||
torch_tensor=torch.empty(0),
|
torch_tensor=torch.empty(0),
|
||||||
|
shard_spec: str = None,
|
||||||
):
|
):
|
||||||
self._size = size
|
self._size = size
|
||||||
self._dtype = dtype
|
self._dtype = dtype
|
||||||
self._requires_grad = requires_grad
|
self._requires_grad = requires_grad
|
||||||
self._pin_memory = pin_memory
|
self._pin_memory = pin_memory
|
||||||
self._torch_tensor = torch_tensor
|
self._torch_tensor = torch_tensor
|
||||||
|
self._shard_spec = shard_spec
|
||||||
|
|
||||||
|
@property
|
||||||
|
def shard_spec(self) -> Optional[str]:
|
||||||
|
return self._shard_spec
|
||||||
|
|
||||||
|
@property
|
||||||
|
def data(self):
|
||||||
|
return self._torch_tensor.data
|
||||||
|
|
||||||
|
@property
|
||||||
|
def grad(self):
|
||||||
|
return self._torch_tensor.grad
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def init_from_torch_tensor(tensor: torch.Tensor):
|
def init_from_torch_tensor(tensor: torch.Tensor, shard_spec: str = None) -> 'ColoTensor':
|
||||||
colo_t = ColoTensor(*tensor.size(),
|
colo_t = ColoTensor(*tensor.size(),
|
||||||
dtype=tensor.dtype,
|
dtype=tensor.dtype,
|
||||||
requires_grad=tensor.requires_grad,
|
requires_grad=tensor.requires_grad,
|
||||||
pin_memory=tensor.pin_memory,
|
pin_memory=tensor.pin_memory,
|
||||||
torch_tensor=tensor)
|
torch_tensor=tensor,
|
||||||
|
shard_spec=shard_spec)
|
||||||
return colo_t
|
return colo_t
|
||||||
|
|
||||||
def del_torch_tensor(self) -> None:
|
def del_torch_tensor(self) -> None:
|
||||||
|
@ -67,7 +82,5 @@ class ColoTensor(object):
|
||||||
if kwargs is None:
|
if kwargs is None:
|
||||||
kwargs = {}
|
kwargs = {}
|
||||||
|
|
||||||
kwargs = {
|
kwargs = {k: v.torch_tensor() if isinstance(v, ColoTensor) else v for k, v in kwargs.items()}
|
||||||
k: v.torch_tensor() if isinstance(v, ColoTensor) else v for k,v in kwargs.items()
|
|
||||||
}
|
|
||||||
return func(*args, **kwargs)
|
return func(*args, **kwargs)
|
||||||
|
|
|
@ -0,0 +1,74 @@
|
||||||
|
from joblib import Parallel
|
||||||
|
from numpy import allclose, require
|
||||||
|
import torch
|
||||||
|
from colossalai.context.parallel_mode import ParallelMode
|
||||||
|
from colossalai.tensor import ColoTensor
|
||||||
|
from copy import deepcopy
|
||||||
|
|
||||||
|
from functools import partial
|
||||||
|
|
||||||
|
import colossalai
|
||||||
|
import pytest
|
||||||
|
import torch
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
from colossalai.logging import get_dist_logger
|
||||||
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
||||||
|
from colossalai.utils import free_port
|
||||||
|
from colossalai.core import global_context as gpc
|
||||||
|
|
||||||
|
|
||||||
|
def run_linear_tp1d_row_test():
|
||||||
|
in_dim = 4
|
||||||
|
out_dim = 5
|
||||||
|
|
||||||
|
fc = torch.nn.Linear(in_dim, out_dim, bias=True)
|
||||||
|
fc_ref = deepcopy(fc)
|
||||||
|
|
||||||
|
input_ref = torch.randn(1, in_dim)
|
||||||
|
input_tensor = input_ref.clone()
|
||||||
|
|
||||||
|
# sharded_weight = ColoTensor.init_from_torch_tensor(fc_ref.weight, "1Drow")
|
||||||
|
|
||||||
|
# shard weight at begiin
|
||||||
|
world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
|
||||||
|
sharded_weight = ColoTensor(in_dim / world_size, out_dim, shard_spec="1Drow")
|
||||||
|
sharded_bias = ColoTensor.init_from_torch_tensor(fc_ref.bias)
|
||||||
|
|
||||||
|
# replace the torch nn.Parameters with ShardedTensor
|
||||||
|
delattr(fc, 'weight')
|
||||||
|
setattr(fc, 'weight', sharded_weight)
|
||||||
|
delattr(fc, 'bias')
|
||||||
|
setattr(fc, 'bias', sharded_bias)
|
||||||
|
|
||||||
|
fc.weight.requires_grad = True
|
||||||
|
fc.bias.requires_grad = True
|
||||||
|
|
||||||
|
# torch.nn.functional.linear(torch.randn(1, in_dim), sharded_weight, sharded_bias)
|
||||||
|
out = fc(input_tensor)
|
||||||
|
loss = out.sum()
|
||||||
|
loss.backward()
|
||||||
|
|
||||||
|
out_ref = fc_ref(input_ref)
|
||||||
|
loss_ref = out_ref.sum()
|
||||||
|
loss_ref.backward()
|
||||||
|
|
||||||
|
assert (loss_ref == loss)
|
||||||
|
assert allclose(fc_ref.weight.grad, fc.weight.torch_tensor().grad)
|
||||||
|
|
||||||
|
|
||||||
|
def run_dist(rank, world_size, port):
|
||||||
|
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||||
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
|
run_linear_tp1d_row_test()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.dist
|
||||||
|
@pytest.mark.parametrize("world_size", [4])
|
||||||
|
@rerun_if_address_is_in_use()
|
||||||
|
def test_linear_1d(world_size):
|
||||||
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||||
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test_linear_1d(4)
|
Loading…
Reference in New Issue