mirror of https://github.com/hpcaitech/ColossalAI
[example] updated large-batch optimizer tutorial (#2448)
* [example] updated large-batch optimizer tutorial * polish code * polish codepull/3058/head
parent
2bfeb24308
commit
ac18a445fa
|
@ -1,31 +1,35 @@
|
|||
# Comparison of Large Batch Training Optimization
|
||||
|
||||
## 🚀Quick Start
|
||||
Run with synthetic data
|
||||
```bash
|
||||
colossalai run --nproc_per_node 4 train.py --config config.py -s
|
||||
## Table of contents
|
||||
|
||||
- [Overview](#-overview)
|
||||
- [Quick Start](#-quick-start)
|
||||
|
||||
## 📚 Overview
|
||||
|
||||
This example lets you to quickly try out the large batch training optimization provided by Colossal-AI. We use synthetic dataset to go through the process, thus, you don't need to prepare any dataset. You can try out the `Lamb` and `Lars` optimizers from Colossal-AI with the following code.
|
||||
|
||||
```python
|
||||
from colossalai.nn.optimizer import Lamb, Lars
|
||||
```
|
||||
|
||||
## 🚀 Quick Start
|
||||
|
||||
## Prepare Dataset
|
||||
1. Install PyTorch
|
||||
|
||||
We use CIFAR10 dataset in this example. You should invoke the `donwload_cifar10.py` in the tutorial root directory or directly run the `auto_parallel_with_resnet.py`.
|
||||
The dataset will be downloaded to `colossalai/examples/tutorials/data` by default.
|
||||
If you wish to use customized directory for the dataset. You can set the environment variable `DATA` via the following command.
|
||||
2. Install the dependencies.
|
||||
|
||||
```bash
|
||||
export DATA=/path/to/data
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
You can also use synthetic data for this tutorial if you don't wish to download the `CIFAR10` dataset by adding the `-s` or `--synthetic` flag to the command.
|
||||
|
||||
|
||||
## Run on 2*2 device mesh
|
||||
3. Run the training scripts with synthetic data.
|
||||
|
||||
```bash
|
||||
# run with cifar10
|
||||
colossalai run --nproc_per_node 4 train.py --config config.py
|
||||
# run on 4 GPUs
|
||||
# run with lars
|
||||
colossalai run --nproc_per_node 4 train.py --config config.py --optimizer lars
|
||||
|
||||
# run with synthetic dataset
|
||||
colossalai run --nproc_per_node 4 train.py --config config.py -s
|
||||
# run with lamb
|
||||
colossalai run --nproc_per_node 4 train.py --config config.py --optimizer lamb
|
||||
```
|
||||
|
|
|
@ -6,31 +6,11 @@ from colossalai.amp import AMP_TYPE
|
|||
BATCH_SIZE = 512
|
||||
LEARNING_RATE = 3e-3
|
||||
WEIGHT_DECAY = 0.3
|
||||
NUM_EPOCHS = 10
|
||||
WARMUP_EPOCHS = 3
|
||||
NUM_EPOCHS = 2
|
||||
WARMUP_EPOCHS = 1
|
||||
|
||||
# model config
|
||||
IMG_SIZE = 224
|
||||
PATCH_SIZE = 16
|
||||
HIDDEN_SIZE = 512
|
||||
DEPTH = 4
|
||||
NUM_HEADS = 4
|
||||
MLP_RATIO = 2
|
||||
NUM_CLASSES = 1000
|
||||
CHECKPOINT = False
|
||||
SEQ_LENGTH = (IMG_SIZE // PATCH_SIZE)**2 + 1 # add 1 for cls token
|
||||
|
||||
# parallel setting
|
||||
TENSOR_PARALLEL_SIZE = 2
|
||||
TENSOR_PARALLEL_MODE = '1d'
|
||||
|
||||
parallel = dict(
|
||||
pipeline=2,
|
||||
tensor=dict(mode=TENSOR_PARALLEL_MODE, size=TENSOR_PARALLEL_SIZE),
|
||||
)
|
||||
NUM_CLASSES = 10
|
||||
|
||||
fp16 = dict(mode=AMP_TYPE.NAIVE)
|
||||
clip_grad_norm = 1.0
|
||||
|
||||
# pipeline config
|
||||
NUM_MICRO_BATCHES = parallel['pipeline']
|
||||
|
|
|
@ -1,2 +1,3 @@
|
|||
colossalai >= 0.1.12
|
||||
torch >= 1.8.1
|
||||
colossalai
|
||||
torch
|
||||
titans
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
#!/bin/bash
|
||||
set -euxo pipefail
|
||||
|
||||
pip install -r requirements.txt
|
||||
|
||||
# run test
|
||||
colossalai run --nproc_per_node 4 --master_port 29500 train.py --config config.py --optimizer lars
|
||||
colossalai run --nproc_per_node 4 --master_port 29501 train.py --config config.py --optimizer lamb
|
|
@ -1,19 +1,13 @@
|
|||
import os
|
||||
|
||||
import torch
|
||||
from titans.dataloader.cifar10 import build_cifar
|
||||
from titans.model.vit.vit import _create_vit_model
|
||||
import torch.nn as nn
|
||||
from torchvision.models import resnet18
|
||||
from tqdm import tqdm
|
||||
|
||||
import colossalai
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.nn import CrossEntropyLoss
|
||||
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
||||
from colossalai.nn.optimizer import Lamb, Lars
|
||||
from colossalai.pipeline.pipelinable import PipelinableContext
|
||||
from colossalai.utils import get_dataloader, is_using_pp
|
||||
|
||||
|
||||
class DummyDataloader():
|
||||
|
@ -45,7 +39,10 @@ class DummyDataloader():
|
|||
def main():
|
||||
# initialize distributed setting
|
||||
parser = colossalai.get_default_parser()
|
||||
parser.add_argument('-s', '--synthetic', action="store_true", help="whether use synthetic data")
|
||||
parser.add_argument('--optimizer',
|
||||
choices=['lars', 'lamb'],
|
||||
help="Choose your large-batch optimizer",
|
||||
required=True)
|
||||
args = parser.parse_args()
|
||||
|
||||
# launch from torch
|
||||
|
@ -55,59 +52,22 @@ def main():
|
|||
logger = get_dist_logger()
|
||||
logger.info("initialized distributed environment", ranks=[0])
|
||||
|
||||
if hasattr(gpc.config, 'LOG_PATH'):
|
||||
if gpc.get_global_rank() == 0:
|
||||
log_path = gpc.config.LOG_PATH
|
||||
if not os.path.exists(log_path):
|
||||
os.mkdir(log_path)
|
||||
logger.log_to_file(log_path)
|
||||
# create synthetic dataloaders
|
||||
train_dataloader = DummyDataloader(length=10, batch_size=gpc.config.BATCH_SIZE)
|
||||
test_dataloader = DummyDataloader(length=5, batch_size=gpc.config.BATCH_SIZE)
|
||||
|
||||
use_pipeline = is_using_pp()
|
||||
|
||||
# create model
|
||||
model_kwargs = dict(img_size=gpc.config.IMG_SIZE,
|
||||
patch_size=gpc.config.PATCH_SIZE,
|
||||
hidden_size=gpc.config.HIDDEN_SIZE,
|
||||
depth=gpc.config.DEPTH,
|
||||
num_heads=gpc.config.NUM_HEADS,
|
||||
mlp_ratio=gpc.config.MLP_RATIO,
|
||||
num_classes=10,
|
||||
init_method='jax',
|
||||
checkpoint=gpc.config.CHECKPOINT)
|
||||
|
||||
if use_pipeline:
|
||||
pipelinable = PipelinableContext()
|
||||
with pipelinable:
|
||||
model = _create_vit_model(**model_kwargs)
|
||||
pipelinable.to_layer_list()
|
||||
pipelinable.policy = "uniform"
|
||||
model = pipelinable.partition(1, gpc.pipeline_parallel_size, gpc.get_local_rank(ParallelMode.PIPELINE))
|
||||
else:
|
||||
model = _create_vit_model(**model_kwargs)
|
||||
|
||||
# count number of parameters
|
||||
total_numel = 0
|
||||
for p in model.parameters():
|
||||
total_numel += p.numel()
|
||||
if not gpc.is_initialized(ParallelMode.PIPELINE):
|
||||
pipeline_stage = 0
|
||||
else:
|
||||
pipeline_stage = gpc.get_local_rank(ParallelMode.PIPELINE)
|
||||
logger.info(f"number of parameters: {total_numel} on pipeline stage {pipeline_stage}")
|
||||
|
||||
# create dataloaders
|
||||
root = os.environ.get('DATA', '../data/')
|
||||
if args.synthetic:
|
||||
train_dataloader = DummyDataloader(length=30, batch_size=gpc.config.BATCH_SIZE)
|
||||
test_dataloader = DummyDataloader(length=10, batch_size=gpc.config.BATCH_SIZE)
|
||||
else:
|
||||
train_dataloader, test_dataloader = build_cifar(gpc.config.BATCH_SIZE, root, pad_if_needed=True)
|
||||
# build model
|
||||
model = resnet18(num_classes=gpc.config.NUM_CLASSES)
|
||||
|
||||
# create loss function
|
||||
criterion = CrossEntropyLoss(label_smoothing=0.1)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
|
||||
# create optimizer
|
||||
optimizer = Lars(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
|
||||
if args.optimizer == "lars":
|
||||
optim_cls = Lars
|
||||
elif args.optimizer == "lamb":
|
||||
optim_cls = Lamb
|
||||
optimizer = optim_cls(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
|
||||
|
||||
# create lr scheduler
|
||||
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer,
|
||||
|
|
Loading…
Reference in New Issue