[example] updated large-batch optimizer tutorial (#2448)

* [example] updated large-batch optimizer tutorial

* polish code

* polish code
pull/3058/head
Frank Lee 2023-01-11 16:27:31 +08:00 committed by GitHub
parent 2bfeb24308
commit ac18a445fa
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 52 additions and 99 deletions

View File

@ -1,31 +1,35 @@
# Comparison of Large Batch Training Optimization
## 🚀Quick Start
Run with synthetic data
```bash
colossalai run --nproc_per_node 4 train.py --config config.py -s
## Table of contents
- [Overview](#-overview)
- [Quick Start](#-quick-start)
## 📚 Overview
This example lets you to quickly try out the large batch training optimization provided by Colossal-AI. We use synthetic dataset to go through the process, thus, you don't need to prepare any dataset. You can try out the `Lamb` and `Lars` optimizers from Colossal-AI with the following code.
```python
from colossalai.nn.optimizer import Lamb, Lars
```
## 🚀 Quick Start
## Prepare Dataset
1. Install PyTorch
We use CIFAR10 dataset in this example. You should invoke the `donwload_cifar10.py` in the tutorial root directory or directly run the `auto_parallel_with_resnet.py`.
The dataset will be downloaded to `colossalai/examples/tutorials/data` by default.
If you wish to use customized directory for the dataset. You can set the environment variable `DATA` via the following command.
2. Install the dependencies.
```bash
export DATA=/path/to/data
pip install -r requirements.txt
```
You can also use synthetic data for this tutorial if you don't wish to download the `CIFAR10` dataset by adding the `-s` or `--synthetic` flag to the command.
## Run on 2*2 device mesh
3. Run the training scripts with synthetic data.
```bash
# run with cifar10
colossalai run --nproc_per_node 4 train.py --config config.py
# run on 4 GPUs
# run with lars
colossalai run --nproc_per_node 4 train.py --config config.py --optimizer lars
# run with synthetic dataset
colossalai run --nproc_per_node 4 train.py --config config.py -s
# run with lamb
colossalai run --nproc_per_node 4 train.py --config config.py --optimizer lamb
```

View File

@ -6,31 +6,11 @@ from colossalai.amp import AMP_TYPE
BATCH_SIZE = 512
LEARNING_RATE = 3e-3
WEIGHT_DECAY = 0.3
NUM_EPOCHS = 10
WARMUP_EPOCHS = 3
NUM_EPOCHS = 2
WARMUP_EPOCHS = 1
# model config
IMG_SIZE = 224
PATCH_SIZE = 16
HIDDEN_SIZE = 512
DEPTH = 4
NUM_HEADS = 4
MLP_RATIO = 2
NUM_CLASSES = 1000
CHECKPOINT = False
SEQ_LENGTH = (IMG_SIZE // PATCH_SIZE)**2 + 1 # add 1 for cls token
# parallel setting
TENSOR_PARALLEL_SIZE = 2
TENSOR_PARALLEL_MODE = '1d'
parallel = dict(
pipeline=2,
tensor=dict(mode=TENSOR_PARALLEL_MODE, size=TENSOR_PARALLEL_SIZE),
)
NUM_CLASSES = 10
fp16 = dict(mode=AMP_TYPE.NAIVE)
clip_grad_norm = 1.0
# pipeline config
NUM_MICRO_BATCHES = parallel['pipeline']

View File

@ -1,2 +1,3 @@
colossalai >= 0.1.12
torch >= 1.8.1
colossalai
torch
titans

View File

@ -0,0 +1,8 @@
#!/bin/bash
set -euxo pipefail
pip install -r requirements.txt
# run test
colossalai run --nproc_per_node 4 --master_port 29500 train.py --config config.py --optimizer lars
colossalai run --nproc_per_node 4 --master_port 29501 train.py --config config.py --optimizer lamb

View File

@ -1,19 +1,13 @@
import os
import torch
from titans.dataloader.cifar10 import build_cifar
from titans.model.vit.vit import _create_vit_model
import torch.nn as nn
from torchvision.models import resnet18
from tqdm import tqdm
import colossalai
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.logging import get_dist_logger
from colossalai.nn import CrossEntropyLoss
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.nn.optimizer import Lamb, Lars
from colossalai.pipeline.pipelinable import PipelinableContext
from colossalai.utils import get_dataloader, is_using_pp
class DummyDataloader():
@ -45,7 +39,10 @@ class DummyDataloader():
def main():
# initialize distributed setting
parser = colossalai.get_default_parser()
parser.add_argument('-s', '--synthetic', action="store_true", help="whether use synthetic data")
parser.add_argument('--optimizer',
choices=['lars', 'lamb'],
help="Choose your large-batch optimizer",
required=True)
args = parser.parse_args()
# launch from torch
@ -55,59 +52,22 @@ def main():
logger = get_dist_logger()
logger.info("initialized distributed environment", ranks=[0])
if hasattr(gpc.config, 'LOG_PATH'):
if gpc.get_global_rank() == 0:
log_path = gpc.config.LOG_PATH
if not os.path.exists(log_path):
os.mkdir(log_path)
logger.log_to_file(log_path)
# create synthetic dataloaders
train_dataloader = DummyDataloader(length=10, batch_size=gpc.config.BATCH_SIZE)
test_dataloader = DummyDataloader(length=5, batch_size=gpc.config.BATCH_SIZE)
use_pipeline = is_using_pp()
# create model
model_kwargs = dict(img_size=gpc.config.IMG_SIZE,
patch_size=gpc.config.PATCH_SIZE,
hidden_size=gpc.config.HIDDEN_SIZE,
depth=gpc.config.DEPTH,
num_heads=gpc.config.NUM_HEADS,
mlp_ratio=gpc.config.MLP_RATIO,
num_classes=10,
init_method='jax',
checkpoint=gpc.config.CHECKPOINT)
if use_pipeline:
pipelinable = PipelinableContext()
with pipelinable:
model = _create_vit_model(**model_kwargs)
pipelinable.to_layer_list()
pipelinable.policy = "uniform"
model = pipelinable.partition(1, gpc.pipeline_parallel_size, gpc.get_local_rank(ParallelMode.PIPELINE))
else:
model = _create_vit_model(**model_kwargs)
# count number of parameters
total_numel = 0
for p in model.parameters():
total_numel += p.numel()
if not gpc.is_initialized(ParallelMode.PIPELINE):
pipeline_stage = 0
else:
pipeline_stage = gpc.get_local_rank(ParallelMode.PIPELINE)
logger.info(f"number of parameters: {total_numel} on pipeline stage {pipeline_stage}")
# create dataloaders
root = os.environ.get('DATA', '../data/')
if args.synthetic:
train_dataloader = DummyDataloader(length=30, batch_size=gpc.config.BATCH_SIZE)
test_dataloader = DummyDataloader(length=10, batch_size=gpc.config.BATCH_SIZE)
else:
train_dataloader, test_dataloader = build_cifar(gpc.config.BATCH_SIZE, root, pad_if_needed=True)
# build model
model = resnet18(num_classes=gpc.config.NUM_CLASSES)
# create loss function
criterion = CrossEntropyLoss(label_smoothing=0.1)
criterion = nn.CrossEntropyLoss()
# create optimizer
optimizer = Lars(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
if args.optimizer == "lars":
optim_cls = Lars
elif args.optimizer == "lamb":
optim_cls = Lamb
optimizer = optim_cls(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
# create lr scheduler
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer,