[NFC] polish batch_norm_handler.py code style (#2359)

pull/2367/head
ExtremeViscent 2023-01-06 13:41:38 +08:00 committed by GitHub
parent e11a005c02
commit ac0d30fe2e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 8 additions and 8 deletions

View File

@ -2,9 +2,9 @@ import operator
from functools import reduce
import torch
from colossalai.auto_parallel.tensor_shard.deprecated._utils import \
ignore_sharding_exception
from colossalai.auto_parallel.tensor_shard.deprecated.sharding_strategy import (ShardingStrategy, StrategiesVector)
from colossalai.auto_parallel.tensor_shard.deprecated._utils import ignore_sharding_exception
from colossalai.auto_parallel.tensor_shard.deprecated.sharding_strategy import ShardingStrategy, StrategiesVector
from .operator_handler import OperatorHandler
@ -76,19 +76,19 @@ class BatchNormHandler(OperatorHandler):
Argument:
sharding_size_forward(int): The forward activation will be divided
into sharding_size_forward number partions.
sharding_size_backward_activation(int): The backward activation will
sharding_size_backward_activation(int): The backward activation will
be divided into sharding_size_backward_activation number partions.
sharding_size_weight(int): The backward weight will be divided
into sharding_size_weight number partions.
Return:
memory_cost(Tuple[float]): Memory cost per device with this
memory_cost(Tuple[float]): Memory cost per device with this
specific strategy, the first element of this tuple is forward
memory cost, and the second element of this tuple is backward
memory cost.
memory_cost_forward(float): Memory cost of forward activation per
memory_cost_forward(float): Memory cost of forward activation per
device with this specific strategy.
memory_cost_backward_activation(float): Memory cost of backward activation
memory_cost_backward_activation(float): Memory cost of backward activation
per device with this specific strategy.
'''
# compute the memory cost of this strategy
@ -458,7 +458,7 @@ class BatchNormHandler(OperatorHandler):
norm_handler.register_strategy()
for strategy in norm_handler.strategies_vector:
print(f'{strategy.name}, computation_cost: {strategy.compute_cost}, memory_cost: {strategy.memory_cost}')
Output:
RS0 = RS0 x S0, computation_cost: 131072, memory_cost: 524288.0
RS1 = RS1 x S1, computation_cost: 131072, memory_cost: 524288.0