mirror of https://github.com/hpcaitech/ColossalAI
[NFC] polish batch_norm_handler.py code style (#2359)
parent
e11a005c02
commit
ac0d30fe2e
|
@ -2,9 +2,9 @@ import operator
|
|||
from functools import reduce
|
||||
|
||||
import torch
|
||||
from colossalai.auto_parallel.tensor_shard.deprecated._utils import \
|
||||
ignore_sharding_exception
|
||||
from colossalai.auto_parallel.tensor_shard.deprecated.sharding_strategy import (ShardingStrategy, StrategiesVector)
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.deprecated._utils import ignore_sharding_exception
|
||||
from colossalai.auto_parallel.tensor_shard.deprecated.sharding_strategy import ShardingStrategy, StrategiesVector
|
||||
|
||||
from .operator_handler import OperatorHandler
|
||||
|
||||
|
@ -76,19 +76,19 @@ class BatchNormHandler(OperatorHandler):
|
|||
Argument:
|
||||
sharding_size_forward(int): The forward activation will be divided
|
||||
into sharding_size_forward number partions.
|
||||
sharding_size_backward_activation(int): The backward activation will
|
||||
sharding_size_backward_activation(int): The backward activation will
|
||||
be divided into sharding_size_backward_activation number partions.
|
||||
sharding_size_weight(int): The backward weight will be divided
|
||||
into sharding_size_weight number partions.
|
||||
|
||||
Return:
|
||||
memory_cost(Tuple[float]): Memory cost per device with this
|
||||
memory_cost(Tuple[float]): Memory cost per device with this
|
||||
specific strategy, the first element of this tuple is forward
|
||||
memory cost, and the second element of this tuple is backward
|
||||
memory cost.
|
||||
memory_cost_forward(float): Memory cost of forward activation per
|
||||
memory_cost_forward(float): Memory cost of forward activation per
|
||||
device with this specific strategy.
|
||||
memory_cost_backward_activation(float): Memory cost of backward activation
|
||||
memory_cost_backward_activation(float): Memory cost of backward activation
|
||||
per device with this specific strategy.
|
||||
'''
|
||||
# compute the memory cost of this strategy
|
||||
|
@ -458,7 +458,7 @@ class BatchNormHandler(OperatorHandler):
|
|||
norm_handler.register_strategy()
|
||||
for strategy in norm_handler.strategies_vector:
|
||||
print(f'{strategy.name}, computation_cost: {strategy.compute_cost}, memory_cost: {strategy.memory_cost}')
|
||||
|
||||
|
||||
Output:
|
||||
RS0 = RS0 x S0, computation_cost: 131072, memory_cost: 524288.0
|
||||
RS1 = RS1 x S1, computation_cost: 131072, memory_cost: 524288.0
|
||||
|
|
Loading…
Reference in New Issue