mirror of https://github.com/hpcaitech/ColossalAI
[Tensor] init ColoParameter (#914)
parent
193d629311
commit
ab95ec9aea
|
@ -2,11 +2,12 @@ from .spec import ComputePattern, ParallelAction, TensorSpec, ShardPattern
|
|||
from .op_wrapper import (
|
||||
colo_op_impl,)
|
||||
from .colo_tensor import ColoTensor
|
||||
from .colo_parameter import ColoParameter
|
||||
from .utils import convert_parameter, named_params_with_colotensor
|
||||
from ._ops import *
|
||||
from .optim.colo_optimizer import ColoOptimizer
|
||||
|
||||
__all__ = [
|
||||
'ColoTensor', 'convert_parameter', 'colo_op_impl', 'ComputePattern', 'TensorSpec', 'ParallelAction',
|
||||
'named_params_with_colotensor', 'ShardPattern', 'ColoOptimizer'
|
||||
'named_params_with_colotensor', 'ShardPattern', 'ColoOptimizer', 'ColoParameter'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,28 @@
|
|||
from .colo_tensor import ColoTensor
|
||||
from .const import TensorType
|
||||
import torch
|
||||
|
||||
|
||||
class ColoParameter(ColoTensor):
|
||||
r"""A kind of ColoTensor to be considered as a module parameter.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kargs):
|
||||
super().__init__(*args, **kargs)
|
||||
self._type = TensorType.MODEL
|
||||
|
||||
def __new__(cls, *args, **kwargs):
|
||||
t = super(ColoParameter, cls).__new__(cls)
|
||||
t._type = TensorType.MODEL
|
||||
return t
|
||||
|
||||
@staticmethod
|
||||
def init_from_torch_tensor(tensor: torch.Tensor, save_payload=True) -> 'ColoParameter':
|
||||
colo_p = ColoParameter(*tensor.size(),
|
||||
dtype=tensor.dtype,
|
||||
requires_grad=tensor.requires_grad,
|
||||
pin_memory=tensor.is_pinned(),
|
||||
device=tensor.device,
|
||||
torch_tensor=tensor if save_payload else torch.empty(0))
|
||||
return colo_p
|
|
@ -7,12 +7,7 @@ from colossalai.core import global_context as gpc
|
|||
from colossalai.nn.layer.utils import divide
|
||||
from colossalai.tensor import TensorSpec, ComputePattern, ShardPattern
|
||||
from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, gather_forward_split_backward
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class TensorType(Enum):
|
||||
MODEL = 0
|
||||
NONMODEL = 1 # mainly activations
|
||||
from .const import TensorType
|
||||
|
||||
|
||||
class ColoTensor(object):
|
||||
|
@ -26,17 +21,14 @@ class ColoTensor(object):
|
|||
def __new__(cls, *args, **kwargs):
|
||||
return super(ColoTensor, cls).__new__(cls)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*size: Tuple[int],
|
||||
dtype=None,
|
||||
requires_grad=False,
|
||||
pin_memory=False,
|
||||
device=None,
|
||||
torch_tensor=torch.empty(0),
|
||||
shard_spec: TensorSpec = TensorSpec(),
|
||||
is_model_data: bool = False,
|
||||
):
|
||||
def __init__(self,
|
||||
*size: Tuple[int],
|
||||
dtype=None,
|
||||
requires_grad=False,
|
||||
pin_memory=False,
|
||||
device=None,
|
||||
torch_tensor=torch.empty(0),
|
||||
shard_spec: TensorSpec = TensorSpec()):
|
||||
self._size = size
|
||||
self._dtype = dtype
|
||||
self._requires_grad = requires_grad
|
||||
|
@ -45,10 +37,7 @@ class ColoTensor(object):
|
|||
self._torch_tensor = torch_tensor
|
||||
self._shard_spec = shard_spec
|
||||
self._shard_pattern = ShardPattern.NA
|
||||
if is_model_data:
|
||||
self._type = TensorType.MODEL
|
||||
else:
|
||||
self._type = TensorType.NONMODEL
|
||||
self._type = TensorType.NONMODEL
|
||||
|
||||
def __getitem__(self, key):
|
||||
return ColoTensor.init_from_torch_tensor(self.torch_tensor()[key])
|
||||
|
@ -97,14 +86,13 @@ class ColoTensor(object):
|
|||
return product(self._size)
|
||||
|
||||
@staticmethod
|
||||
def init_from_torch_tensor(tensor: torch.Tensor, save_payload=True, is_model_data=False) -> 'ColoTensor':
|
||||
def init_from_torch_tensor(tensor: torch.Tensor, save_payload=True) -> 'ColoTensor':
|
||||
colo_t = ColoTensor(*tensor.size(),
|
||||
dtype=tensor.dtype,
|
||||
requires_grad=tensor.requires_grad,
|
||||
pin_memory=tensor.is_pinned(),
|
||||
device=tensor.device,
|
||||
torch_tensor=tensor if save_payload else torch.empty(0),
|
||||
is_model_data=is_model_data)
|
||||
torch_tensor=tensor if save_payload else torch.empty(0))
|
||||
return colo_t
|
||||
|
||||
def del_torch_tensor(self, save_shape=False) -> None:
|
||||
|
@ -143,12 +131,11 @@ class ColoTensor(object):
|
|||
self.gather()
|
||||
# Model Parameters
|
||||
if self._shard_spec.num_action == 1:
|
||||
parallel_action = self._shard_spec.get_action_by_compute_pattern(
|
||||
self._shard_spec.compute_patterns[0])
|
||||
parallel_action = self._shard_spec.get_action_by_compute_pattern(self._shard_spec.compute_patterns[0])
|
||||
if parallel_action.compute_pattern in [ComputePattern.TP1DRow_Linear, \
|
||||
ComputePattern.TP1DCol_Embedding]:
|
||||
self._shard_1d(parallel_action=parallel_action, dim=-1)
|
||||
self._shard_pattern = ShardPattern.Col # We bind our ComputePattern on weight, which has to be transposed when linear().
|
||||
self._shard_pattern = ShardPattern.Col # We bind our ComputePattern on weight, which has to be transposed when linear().
|
||||
elif parallel_action.compute_pattern in [ComputePattern.TP1DCol_Linear, \
|
||||
ComputePattern.TP1DRow_Embedding]:
|
||||
self._shard_1d(parallel_action=parallel_action, dim=0)
|
||||
|
@ -157,7 +144,7 @@ class ColoTensor(object):
|
|||
raise NotImplementedError
|
||||
|
||||
def gather(self):
|
||||
assert self.is_activation(), 'Currently we only support gather Activation ColoTensor.'
|
||||
assert not self.is_model_data(), 'Currently we only support gather Activation ColoTensor.'
|
||||
assert not self.is_gathered(), 'Only sharded ColoTensor can be gathered.'
|
||||
parallel_action = self._shard_spec.get_action_by_compute_pattern(ComputePattern.DP)
|
||||
if self._shard_pattern == ShardPattern.Row:
|
||||
|
@ -174,8 +161,8 @@ class ColoTensor(object):
|
|||
def has_spec(self) -> bool:
|
||||
return self._shard_spec is not None and self._shard_spec.num_action > 0
|
||||
|
||||
def is_activation(self) -> bool:
|
||||
return self._type == TensorType.NONMODEL
|
||||
def is_model_data(self) -> bool:
|
||||
return self._type == TensorType.MODEL
|
||||
|
||||
def _shard_1d(self, parallel_action, dim=-1):
|
||||
num_partition = gpc.get_world_size(parallel_action.parallel_mode)
|
||||
|
|
|
@ -0,0 +1,6 @@
|
|||
from enum import Enum
|
||||
|
||||
|
||||
class TensorType(Enum):
|
||||
MODEL = 0
|
||||
NONMODEL = 1 # mainly activations
|
|
@ -1,6 +1,6 @@
|
|||
from .utils import InsertPostInitMethodToModuleSubClasses
|
||||
import torch
|
||||
from colossalai.tensor import ColoTensor
|
||||
from colossalai.tensor import ColoTensor, ColoParameter
|
||||
import types
|
||||
|
||||
from torch import nn
|
||||
|
@ -100,10 +100,7 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
|||
tensor_detached = param.to(self._device).detach()
|
||||
tensor_detached.requires_grad = requires_grad
|
||||
|
||||
setattr(
|
||||
module, name,
|
||||
ColoTensor.init_from_torch_tensor(tensor=tensor_detached,
|
||||
save_payload=save_torch_payload,
|
||||
is_model_data=True))
|
||||
setattr(module, name,
|
||||
ColoParameter.init_from_torch_tensor(tensor=tensor_detached, save_payload=save_torch_payload))
|
||||
|
||||
ColoModulize(module)
|
||||
|
|
|
@ -38,17 +38,23 @@ def run_1d_col_tp():
|
|||
model = model_builder(checkpoint=True)
|
||||
|
||||
parallel_action_list_row = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow_Linear, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
ParallelAction(priority=1,
|
||||
compute_pattern=ComputePattern.TP1DRow_Linear,
|
||||
parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec_row = TensorSpec(parallel_action_list_row)
|
||||
|
||||
parallel_action_list_col = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol_Linear, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
ParallelAction(priority=1,
|
||||
compute_pattern=ComputePattern.TP1DCol_Linear,
|
||||
parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec_col = TensorSpec(parallel_action_list_col)
|
||||
|
||||
parallel_action_list_embedding_col = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol_Embedding, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
ParallelAction(priority=1,
|
||||
compute_pattern=ComputePattern.TP1DCol_Embedding,
|
||||
parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec_embedding_col = TensorSpec(parallel_action_list_embedding_col)
|
||||
|
||||
|
@ -125,6 +131,9 @@ def test_model_parameters():
|
|||
param_cnt += 1
|
||||
assert param_cnt == 5
|
||||
|
||||
for name, colo_p in model.colo_named_parameters():
|
||||
assert colo_p.is_model_data()
|
||||
|
||||
param_cnt = 0
|
||||
for name, p in model.named_parameters(recurse=False):
|
||||
param_cnt += 1
|
||||
|
@ -175,12 +184,16 @@ def run_1d_row_tp():
|
|||
model = model_builder(checkpoint=True)
|
||||
|
||||
parallel_action_list = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow_Linear, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
ParallelAction(priority=1,
|
||||
compute_pattern=ComputePattern.TP1DRow_Linear,
|
||||
parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec = TensorSpec(parallel_action_list)
|
||||
|
||||
parallel_action_list_embedding_row = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow_Embedding, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
ParallelAction(priority=1,
|
||||
compute_pattern=ComputePattern.TP1DRow_Embedding,
|
||||
parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec_embedding_row = TensorSpec(parallel_action_list_embedding_row)
|
||||
|
||||
|
@ -243,6 +256,7 @@ def run_dist(rank, world_size, port):
|
|||
run_1d_row_tp()
|
||||
run_1d_col_tp()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@parameterize('world_size', [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
|
@ -252,6 +266,6 @@ def test_simple_net(world_size):
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_simple_net()
|
||||
# test_model_parameters()
|
||||
# test_simple_net()
|
||||
test_model_parameters()
|
||||
# test_colo_optimizer()
|
||||
|
|
Loading…
Reference in New Issue