Browse Source

[Inference/Kernel] Optimize paged attention: Refactor key cache layout (#5643)

* optimize flashdecodingattention: refactor code with different key cache layout(from [num_blocks, num_kv_heads, block_size, head_size] to [num_blocks, num_kv_heads, head_size/x, block_size, x])

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
pull/5656/head
Steve Luo 7 months ago committed by GitHub
parent
commit
a8fd3b0342
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 3
      colossalai/inference/modeling/models/nopadding_llama.py
  2. 11
      examples/inference/benchmark_ops/benchmark_flash_decoding_attention.py
  3. 40
      extensions/csrc/kernel/cuda/attention/attention_utils.h
  4. 73
      extensions/csrc/kernel/cuda/flash_decoding_attention_kernel.cu
  5. 4
      extensions/csrc/kernel/cuda/rms_layernorm_kernel.cu
  6. 2
      extensions/pybind/inference/inference.cpp
  7. 4
      tests/test_infer/test_ops/cuda/test_flash_decoding_attention.py
  8. 64
      tests/test_infer/test_ops/triton/kernel_utils.py

3
colossalai/inference/modeling/models/nopadding_llama.py

@ -593,7 +593,7 @@ class NopadLlamaAttention(ParallelModule, LlamaAttention):
high_precision,
)
# inference_ops.flash_decoding_attention(
# attn_output,
# output_tensor,
# query_states,
# k_cache,
# v_cache,
@ -605,6 +605,7 @@ class NopadLlamaAttention(ParallelModule, LlamaAttention):
# fd_inter_tensor.mid_output_lse,
# sm_scale,
# )
# attn_output = output_tensor
else:
if is_verifier:
rotary_embedding(query_states, key_states, cos_sin[0], cos_sin[1])

11
examples/inference/benchmark_ops/benchmark_flash_decoding_attention.py

@ -5,6 +5,7 @@ from colossalai.kernel.triton import flash_decoding_attention
from colossalai.utils import get_current_device
from tests.test_infer.test_ops.triton.kernel_utils import (
generate_caches_and_block_tables_v2,
generate_caches_and_block_tables_v3,
generate_caches_and_block_tables_vllm,
)
@ -95,7 +96,11 @@ def benchmark_flash_decoding_attention(
BATCH_SIZE, HEAD_SIZE, NUM_ATTN_HEADS, NUM_KV_HEADS, MAX_SEQ_LEN, dtype, device
)
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
triton_k_cache, triton_v_cache, _ = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, kv_seq_lengths, BATCH_SIZE, MAX_NUM_BLOCKS_PER_SEQ, BLOCK_SIZE, dtype, device
)
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v3(
k_unpad, v_unpad, kv_seq_lengths, BATCH_SIZE, MAX_NUM_BLOCKS_PER_SEQ, BLOCK_SIZE, dtype, device
)
@ -135,8 +140,8 @@ def benchmark_flash_decoding_attention(
elif provider == "triton_flash_decoding_attention":
fn = lambda: flash_decoding_attention(
q.squeeze(2),
k_cache,
v_cache,
triton_k_cache,
triton_v_cache,
kv_seq_lengths,
block_tables,
BLOCK_SIZE,

40
extensions/csrc/kernel/cuda/attention/attention_utils.h

@ -41,7 +41,8 @@ namespace attention {
#define SHFL_SYNC(var, src_lane) __shfl_sync(uint32_t(-1), var, src_lane)
// Q*K^T operation.
template <int NUM_THREADS_PER_TOKEN, typename VecT, int N>
template <int NUM_THREADS_PER_ROUNDS, int NUM_THREADS_PER_X, typename VecT,
int N>
inline __device__ float qk_dot_(const VecT (&q)[N], const VecT (&k)[N]) {
using A_vec = typename common::FloatVecTypeTrait<VecT>::Type;
// Compute the parallel products for Q*K^T (treat vector lanes separately).
@ -58,21 +59,27 @@ inline __device__ float qk_dot_(const VecT (&q)[N], const VecT (&k)[N]) {
// Finalize the reduction across lanes.
float qk = sum_vect(qk_vec);
#pragma unroll
for (int mask = (NUM_THREADS_PER_TOKEN >> 1); mask > 0; mask >>= 1) {
for (int mask = (WARP_SIZE >> 1); mask >= NUM_THREADS_PER_ROUNDS;
mask >>= 1) {
qk += SHFL_XOR_SYNC(qk, mask);
}
#pragma unroll
for (int mask = (NUM_THREADS_PER_X >> 1); mask > 0; mask >>= 1) {
qk += SHFL_XOR_SYNC(qk, mask);
}
return qk;
}
template <typename T, int NUM_THREADS_PER_TOKEN>
template <typename T, int NUM_THREADS_PER_ROUNDS, int NUM_THREADS_PER_X>
struct Qk_dot {
template <typename VecT, int N>
static inline __device__ float dot(const VecT (&q)[N], const VecT (&k)[N]) {
return qk_dot_<NUM_THREADS_PER_TOKEN>(q, k);
return qk_dot_<NUM_THREADS_PER_ROUNDS, NUM_THREADS_PER_X>(q, k);
}
};
template <int NUM_WARPS, int NUM_THREADS_PER_TOKEN>
template <int NUM_WARPS, int NUM_THREADS_PER_ROUNDS, int NUM_THREADS_PER_X>
inline __device__ float block_max(float* red_smem, float max) {
int warp = threadIdx.x >> 5;
int lane = threadIdx.x & 0x1f;
@ -81,7 +88,8 @@ inline __device__ float block_max(float* red_smem, float max) {
// for each warp, the 1st out of NUM_THREADS_PER_TOKEN thread already has the
// max value among every NUM_THREADS_PER_TOKEN threads.
#pragma unroll
for (int mask = (WARP_SIZE >> 1); mask >= NUM_THREADS_PER_TOKEN; mask >>= 1) {
for (int mask = (NUM_THREADS_PER_ROUNDS >> 1); mask >= NUM_THREADS_PER_X;
mask >>= 1) {
max = fmaxf(max, SHFL_XOR_SYNC(max, mask));
}
@ -155,10 +163,12 @@ inline __device__ void block_sum(float* red_smem, VecT& acc) {
if (lane < NUM_THREADS_PER_GROUP) {
if constexpr (N == VEC_SIZE_8) {
VecT* vdst = &((reinterpret_cast<VecT*>(dst))[lane]);
(reinterpret_cast<float4*>(vdst))[0] =
(reinterpret_cast<float4*>(acc_ptr))[0];
(reinterpret_cast<float4*>(vdst))[1] =
(reinterpret_cast<float4*>(acc_ptr))[1];
const int idx0 = (lane >> 2) & 0x1;
const int idx1 = idx0 ^ 0x1;
(reinterpret_cast<float4*>(vdst))[idx0] =
(reinterpret_cast<float4*>(acc_ptr))[idx0];
(reinterpret_cast<float4*>(vdst))[idx1] =
(reinterpret_cast<float4*>(acc_ptr))[idx1];
} else {
(reinterpret_cast<VecT*>(dst))[lane] = acc;
}
@ -173,10 +183,12 @@ inline __device__ void block_sum(float* red_smem, VecT& acc) {
float* src_ptr = reinterpret_cast<float*>(&src_reg);
if constexpr (N == VEC_SIZE_8) {
VecT* vsrc = &((reinterpret_cast<VecT*>(src))[lane]);
(reinterpret_cast<float4*>(src_ptr))[0] =
(reinterpret_cast<float4*>(vsrc))[0];
(reinterpret_cast<float4*>(src_ptr))[1] =
(reinterpret_cast<float4*>(vsrc))[1];
const int idx0 = (lane >> 2) & 0x1;
const int idx1 = idx0 ^ 0x1;
(reinterpret_cast<float4*>(src_ptr))[idx0] =
(reinterpret_cast<float4*>(vsrc))[idx0];
(reinterpret_cast<float4*>(src_ptr))[idx1] =
(reinterpret_cast<float4*>(vsrc))[idx1];
} else {
src_reg = (reinterpret_cast<VecT*>(src))[lane];
}

73
extensions/csrc/kernel/cuda/flash_decoding_attention_kernel.cu

@ -1,6 +1,6 @@
/*This code adapted from vllm:
* https://github.com/vllm-project/vllm/blob/main/csrc/attention/attention_kernels.cu
* with different kvcache layout. */
*/
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
@ -50,7 +50,7 @@ template<typename scalar_t, typename cache_t, int HEAD_SIZE, int BLOCK_SIZE, int
__global__ void flash_decoding_attention_kernel(
scalar_t* __restrict__ out, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ q, // [num_tokens, num_heads, head_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, block_size, head_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, block_size, head_size]
const int* __restrict__ context_lens, // [num_tokens]
const int* __restrict__ block_tables, // [num_tokens, max_num_blocks_per_seq]
@ -70,15 +70,19 @@ __global__ void flash_decoding_attention_kernel(
const int num_queries_per_kv = num_heads / num_kv_heads;
const int kv_head_idx = head_idx / num_queries_per_kv;
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
constexpr int Q_SHARED_SIZE = (HEAD_SIZE * sizeof(scalar_t)) / sizeof(float4);
constexpr int x = sizeof(float4) / sizeof(scalar_t);
constexpr int Q_SHARED_SIZE = HEAD_SIZE / x;
// here thread_group does not determine the number of threads responsible for a key
// but only the VEC_SIZE of each thread
constexpr int THREAD_GROUP_SIZE = MAX(WARP_SIZE / BLOCK_SIZE, 1);
constexpr int VEC_SIZE = MIN(ROUND_DOWN_HIGHEST_POWER_OF_TWO((HEAD_SIZE / THREAD_GROUP_SIZE)), sizeof(float4) / sizeof(scalar_t));
constexpr int VEC_SIZE = MIN(ROUND_DOWN_HIGHEST_POWER_OF_TWO((HEAD_SIZE / THREAD_GROUP_SIZE)), x);
constexpr int NUM_VECS_PER_TOKEN = HEAD_SIZE / VEC_SIZE;
constexpr int NUM_THREADS_PER_TOKEN = MIN(NUM_VECS_PER_TOKEN, WARP_SIZE);
constexpr int NUM_ROUNDS_PER_TOKEN = NUM_VECS_PER_TOKEN / NUM_THREADS_PER_TOKEN;
constexpr int WARP_STRIDE = WARP_SIZE * NUM_ROUNDS_PER_TOKEN;
constexpr int NUM_THREADS_PER_X = x / VEC_SIZE;
constexpr int NUM_ROWS_PER_ROUNDS = MIN(WARP_SIZE / NUM_THREADS_PER_X, BLOCK_SIZE);
constexpr int NUM_VECS_PER_THREAD = NUM_ROWS_PER_ROUNDS * NUM_VECS_PER_TOKEN / WARP_SIZE;
using K_vec = typename VecTypeTrait<scalar_t, VEC_SIZE>::Type;
using V_vec = typename VecTypeTrait<scalar_t, VEC_SIZE>::Type;
@ -86,15 +90,17 @@ __global__ void flash_decoding_attention_kernel(
using Float_vec = typename FloatVecTypeTrait<L_vec>::Type;
const int context_len = context_lens[seq_idx];
const int thread_group_offset = thread_idx % NUM_THREADS_PER_TOKEN;
const int thread_group_offset = lane % NUM_THREADS_PER_X;
const int num_context_blocks = DIVIDE_ROUND_UP(context_len, BLOCK_SIZE);
const int* block_table = block_tables + seq_idx * max_num_blocks_per_seq;
const int shared_memory_offset = DIVIDE_ROUND_UP(max_num_blocks_per_seq * sizeof(int), sizeof(float4)) * sizeof(float4);
__shared__ float4 q_shared[Q_SHARED_SIZE];
__shared__ float red_shared_mem[2 * NUM_WARPS];
extern __shared__ char shared_mem[];
float* logits = reinterpret_cast<float*>(shared_mem);
float* out_shared_mem = reinterpret_cast<float*>(shared_mem);
int* block_table_shared = reinterpret_cast<int*>(shared_mem);
float* logits = reinterpret_cast<float*>(shared_mem + shared_memory_offset);
float* out_shared_mem = reinterpret_cast<float*>(shared_mem + shared_memory_offset);
float qk_max = -FLT_MAX;
const float4* q_ptr = reinterpret_cast<const float4*>(q + seq_idx * q_stride + head_idx * HEAD_SIZE);
@ -102,32 +108,47 @@ __global__ void flash_decoding_attention_kernel(
for (int idx = thread_idx; idx < Q_SHARED_SIZE; idx += blockDim.x) {
q_shared[idx] = q_ptr[idx];
}
#pragma unroll
for (int idx = thread_idx; idx < max_num_blocks_per_seq; idx += blockDim.x) {
block_table_shared[idx] = block_table[idx];
}
__syncthreads();
scalar_t* q_shared_ptr = reinterpret_cast<scalar_t*>(q_shared);
// each warp access a whole block
K_vec q_vecs[NUM_VECS_PER_THREAD];
#pragma unroll
for (int idx = lane, i = 0; idx < NUM_ROWS_PER_ROUNDS * NUM_VECS_PER_TOKEN; idx += WARP_SIZE, i += 1) {
const int offset0 = idx / NUM_THREADS_PER_X / NUM_ROWS_PER_ROUNDS;
const int offset1 = idx % NUM_THREADS_PER_X;
q_vecs[i] = *reinterpret_cast<K_vec*>(q_shared_ptr + offset0 * x + offset1 * VEC_SIZE);
}
for (int block_idx = warp_idx; block_idx < num_context_blocks; block_idx += NUM_WARPS) {
const int64_t physical_block_number = static_cast<int64_t>(block_table[block_idx]);
const int64_t physical_block_number = static_cast<int64_t>(block_table_shared[block_idx]);
K_vec k_vecs[NUM_VECS_PER_THREAD];
#pragma unroll
for (int idx = lane; idx < BLOCK_SIZE * NUM_VECS_PER_TOKEN; idx += WARP_STRIDE) {
const int token_idx = block_idx * BLOCK_SIZE + idx / NUM_VECS_PER_TOKEN;
for (int i = 0; i < BLOCK_SIZE; i += NUM_ROWS_PER_ROUNDS) {
const cache_t* k_ptr = k_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride
+ idx * VEC_SIZE;
K_vec k_vecs[NUM_ROUNDS_PER_TOKEN];
K_vec q_vecs[NUM_ROUNDS_PER_TOKEN];
// we must calculate at least one row of hidden vectors
+ i * x;
#pragma unroll
for (int i = 0; i < NUM_ROUNDS_PER_TOKEN; i++) {
k_vecs[i] = (reinterpret_cast<const K_vec*>(k_ptr))[i * WARP_SIZE];
q_vecs[i] = (reinterpret_cast<K_vec*>(q_shared_ptr))[(idx + i * WARP_SIZE) % NUM_VECS_PER_TOKEN];
for (int idx = lane, j = 0; idx < NUM_ROWS_PER_ROUNDS * NUM_VECS_PER_TOKEN; idx += WARP_SIZE, j += 1) {
const int offset0 = idx / NUM_THREADS_PER_X / NUM_ROWS_PER_ROUNDS;
const int offset1 = (idx / NUM_THREADS_PER_X) % NUM_ROWS_PER_ROUNDS;
const int offset2 = idx % NUM_THREADS_PER_X;
k_vecs[j] = *reinterpret_cast<const K_vec*>(k_ptr + offset0 * BLOCK_SIZE * x + offset1 * x + offset2 * VEC_SIZE);
}
float qk = scale * Qk_dot<scalar_t, NUM_THREADS_PER_TOKEN>::dot(q_vecs, k_vecs);
float qk = scale * Qk_dot<scalar_t, NUM_ROWS_PER_ROUNDS * NUM_THREADS_PER_X, NUM_THREADS_PER_X>::dot(q_vecs, k_vecs);
if (thread_group_offset == 0) {
if (thread_group_offset == 0 && lane < NUM_ROWS_PER_ROUNDS * NUM_THREADS_PER_X) {
const int token_idx = block_idx * BLOCK_SIZE + i * NUM_ROWS_PER_ROUNDS + lane / NUM_THREADS_PER_X;
const bool mask = token_idx >= context_len;
logits[token_idx] = mask ? 0.f : qk;
qk_max = mask ? qk_max : fmaxf(qk_max, qk);
@ -136,7 +157,7 @@ __global__ void flash_decoding_attention_kernel(
}
// there exists a __syncthreads within this function
qk_max = block_max<NUM_WARPS, NUM_THREADS_PER_TOKEN>(red_shared_mem, qk_max);
qk_max = block_max<NUM_WARPS, NUM_ROWS_PER_ROUNDS * NUM_THREADS_PER_X, NUM_THREADS_PER_X>(red_shared_mem, qk_max);
// Get the sum of the exp values.
float exp_sum = 0.f;
@ -162,7 +183,7 @@ __global__ void flash_decoding_attention_kernel(
V_vec zero_value;
zero(zero_value);
for (int block_idx = warp_idx; block_idx < num_context_blocks; block_idx += NUM_WARPS) {
const int64_t physical_block_number = static_cast<int64_t>(block_table[block_idx]);
const int64_t physical_block_number = static_cast<int64_t>(block_table_shared[block_idx]);
scalar_t logit;
#pragma unroll
@ -241,7 +262,7 @@ template<
void flash_decoding_attention_v1_launcher(
torch::Tensor& out, // [num_tokens, num_heads, head_size]
torch::Tensor& query, // [num_tokens, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& key_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
torch::Tensor& value_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& context_lens, // [num_tokens]
torch::Tensor& block_tables, // [num_tokens, max_num_blocks_per_seq]
@ -266,7 +287,7 @@ void flash_decoding_attention_v1_launcher(
int logits_size = padded_max_context_len * sizeof(float);
int outputs_size = (NUM_WARPS / 2) * NUM_THREADS_PER_TOKEN * VEC_SIZE * sizeof(float);
// Keep that in sync with the logic here!
int shared_mem_size = std::max(logits_size, outputs_size);
int shared_mem_size = std::max(logits_size, outputs_size) + DIVIDE_ROUND_UP(max_num_blocks_per_seq * sizeof(int), sizeof(float4)) * sizeof(float4);
dim3 grid(num_heads, num_tokens, 1);
dim3 block(NUM_THREADS);
@ -323,7 +344,7 @@ void flash_decoding_attention_v1_launcher(
void flash_decoding_attention(
torch::Tensor& out, // [num_tokens, num_heads, head_size]
torch::Tensor& query, // [num_tokens, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& key_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
torch::Tensor& value_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& context_lens, // [num_tokens]
torch::Tensor& block_tables, // [num_tokens, max_num_blocks_per_seq]

4
extensions/csrc/kernel/cuda/rms_layernorm_kernel.cu

@ -287,7 +287,7 @@ void rms_layernorm(
RMSNORM_LAUNCHER(8, block);
break;
default:
AT_ERROR("unroll_factor must be 1, 2, 4 or 8");
AT_ERROR("unroll_factor must be 1, 2, 3, 4 or 8");
}
}
}
@ -334,7 +334,7 @@ void fused_add_rms_layernorm(
FUSED_ADD_RMSNORM_LAUNCHER(8, block);
break;
default:
AT_ERROR("unroll_factor must be 1, 2, 4 or 8");
AT_ERROR("unroll_factor must be 1, 2, 3, 4 or 8");
}
}
}

2
extensions/pybind/inference/inference.cpp

@ -62,7 +62,7 @@ void flash_decoding_attention(
torch::Tensor& out, // [num_tokens, num_heads, head_size]
torch::Tensor& query, // [num_tokens, num_heads, head_size]
torch::Tensor&
key_cache, // [num_blocks, num_kv_heads, block_size, head_size]
key_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
torch::Tensor&
value_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& context_lens, // [num_tokens]

4
tests/test_infer/test_ops/cuda/test_flash_decoding_attention.py

@ -12,7 +12,7 @@ inference_ops = InferenceOpsLoader().load()
from tests.test_infer.test_ops.triton.kernel_utils import (
convert_kv_unpad_to_padded,
create_attention_mask,
generate_caches_and_block_tables_v2,
generate_caches_and_block_tables_v3,
generate_caches_and_block_tables_vllm,
torch_attn_ref,
)
@ -77,7 +77,7 @@ def test_flash_decoding_attention(
BATCH_SIZE, HEAD_SIZE, NUM_ATTN_HEADS, NUM_KV_HEADS, MAX_SEQ_LEN, dtype, device
)
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v3(
k_unpad, v_unpad, kv_seq_lengths, BATCH_SIZE, MAX_NUM_BLOCKS_PER_SEQ, BLOCK_SIZE, dtype, device
)

64
tests/test_infer/test_ops/triton/kernel_utils.py

@ -150,6 +150,50 @@ def mock_alloc_block_table_and_kvcache_v2(
return block_tables
def mock_alloc_block_table_and_kvcache_v3(
k: torch.Tensor,
v: torch.Tensor,
k_cache: torch.Tensor,
v_cache: torch.Tensor,
context_lengths: torch.Tensor,
num_seqs: int,
max_num_blocks_per_seq: int,
block_size: int,
) -> torch.Tensor:
"""Allocate block tables based on provided context lengths; and copy KV to blocked KV Cache."""
block_id = 0
block_tables = torch.full(size=(num_seqs, max_num_blocks_per_seq), fill_value=-1, dtype=torch.int32)
num_tokens_processed = 0
_, num_kv_heads, head_dim = k.shape
x = 16 // torch.tensor([], dtype=k.dtype).element_size()
for i, seq_len in enumerate(context_lengths.tolist()):
right_bound = (seq_len + block_size - 1) // block_size # open bound
block_tables[i, :right_bound] = torch.arange(block_id, block_id + right_bound, dtype=torch.int32)
# Manually fill kv caches by copying from k and v
for i in range(right_bound):
if i == right_bound - 1:
allocated_locs = seq_len % block_size or block_size
else:
allocated_locs = block_size
# [block_size, num_kv_heads, head_dim/x, x]->[num_kv_heads, head_dim/x, block_size,x]
k_block = (
k[num_tokens_processed : num_tokens_processed + allocated_locs, :, :]
.reshape(allocated_locs, num_kv_heads, head_dim // x, x)
.permute(1, 2, 0, 3)
)
v_block = v[num_tokens_processed : num_tokens_processed + allocated_locs, :, :].permute(1, 0, 2)
k_cache[block_id, :, :, :allocated_locs, :] = k_block
v_cache[block_id, :, :allocated_locs, :] = v_block
num_tokens_processed += allocated_locs
block_id += 1
return block_tables
def mock_alloc_block_table_and_kvcache_vllm(
k: torch.Tensor,
v: torch.Tensor,
@ -251,6 +295,26 @@ def generate_caches_and_block_tables_v2(
return k_cache, v_cache, block_tables
def generate_caches_and_block_tables_v3(
k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype=torch.float16, device="cuda"
) -> Tuple[torch.Tensor, ...]:
# Mock generation of k/v blocked caches and block tables from providied kv unpad and seq lengths
# k_unpad/v_unpad [num_total_tokens, num_kv_heads, head_dim]
_, num_kv_heads, head_dim = k_unpad.shape
x = 16 // torch.tensor([], dtype=dtype).element_size()
k_cache_shape = (bsz * max_num_blocks_per_seq, num_kv_heads, head_dim // x, block_size, x)
v_cache_shape = (bsz * max_num_blocks_per_seq, num_kv_heads, block_size, head_dim)
k_cache = torch.zeros(size=k_cache_shape, dtype=dtype, device=device)
v_cache = torch.zeros(size=v_cache_shape, dtype=dtype, device=device)
# Mock allocation on block tables as well as blocked kv caches
block_tables = mock_alloc_block_table_and_kvcache_v3(
k_unpad, v_unpad, k_cache, v_cache, kv_lengths, bsz, max_num_blocks_per_seq, block_size
)
return k_cache, v_cache, block_tables
def generate_caches_and_block_tables_vllm(
k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype=torch.float16, device="cuda"
) -> Tuple[torch.Tensor, ...]:

Loading…
Cancel
Save