|
|
|
@ -1,13 +1,15 @@
|
|
|
|
|
import math |
|
|
|
|
import warnings |
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
|
import torch.nn.functional as F |
|
|
|
|
import torch.utils.checkpoint |
|
|
|
|
from torch import nn |
|
|
|
|
from torch.nn import CrossEntropyLoss |
|
|
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
|
|
|
from transformers.models.cohere.modeling_cohere import CohereForCausalLM, CohereModel, StaticCache, repeat_kv |
|
|
|
|
from transformers.models.cohere.modeling_cohere import CohereForCausalLM, CohereModel, StaticCache, apply_rotary_pos_emb, repeat_kv |
|
|
|
|
from transformers.utils import logging |
|
|
|
|
|
|
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager |
|
|
|
@ -333,121 +335,28 @@ class CommandPipelineForwards:
|
|
|
|
|
return {"hidden_states": hidden_states} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig): |
|
|
|
|
from transformers import CohereForCausalLM |
|
|
|
|
|
|
|
|
|
def forward( |
|
|
|
|
self: CohereForCausalLM, |
|
|
|
|
input_ids: torch.LongTensor = None, |
|
|
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
|
|
use_cache: Optional[bool] = None, |
|
|
|
|
output_attentions: Optional[bool] = None, |
|
|
|
|
output_hidden_states: Optional[bool] = None, |
|
|
|
|
return_dict: Optional[bool] = None, |
|
|
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
|
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
|
r""" |
|
|
|
|
Args: |
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
|
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
|
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
|
|
|
|
|
|
Returns: |
|
|
|
|
|
|
|
|
|
Example: |
|
|
|
|
|
|
|
|
|
```python |
|
|
|
|
>>> from transformers import AutoTokenizer, CohereForCausalLM |
|
|
|
|
|
|
|
|
|
>>> model = CohereForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
|
|
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
|
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
|
|
|
|
|
|
>>> # Generate |
|
|
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
|
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
|
|
|
```""" |
|
|
|
|
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
|
|
output_hidden_states = ( |
|
|
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
|
|
) |
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) |
|
|
|
|
outputs = self.model( |
|
|
|
|
input_ids=input_ids, |
|
|
|
|
attention_mask=attention_mask, |
|
|
|
|
position_ids=position_ids, |
|
|
|
|
past_key_values=past_key_values, |
|
|
|
|
inputs_embeds=inputs_embeds, |
|
|
|
|
use_cache=use_cache, |
|
|
|
|
output_attentions=output_attentions, |
|
|
|
|
output_hidden_states=output_hidden_states, |
|
|
|
|
return_dict=return_dict, |
|
|
|
|
cache_position=cache_position, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
hidden_states = outputs[0] |
|
|
|
|
|
|
|
|
|
logits = self.lm_head(hidden_states) |
|
|
|
|
logits = logits * self.logit_scale |
|
|
|
|
logits = logits.float() |
|
|
|
|
|
|
|
|
|
loss = None |
|
|
|
|
if labels is not None: |
|
|
|
|
# Shift so that tokens < n predict n |
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
|
shift_labels = shift_labels.view(-1) |
|
|
|
|
# Enable model parallelism |
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
|
|
new_vocab_size = logits.shape[-1] |
|
|
|
|
shift_logits = shift_logits.view(-1, new_vocab_size) |
|
|
|
|
loss = cross_entropy_1d( |
|
|
|
|
shift_logits, |
|
|
|
|
shift_labels, |
|
|
|
|
process_group=shard_config.tensor_parallel_process_group, |
|
|
|
|
vocab_size=self.lm_head.out_features, |
|
|
|
|
dtype=self.model.dtype, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
if not return_dict: |
|
|
|
|
output = (logits,) + outputs[1:] |
|
|
|
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
|
|
loss=loss, |
|
|
|
|
logits=logits, |
|
|
|
|
past_key_values=outputs.past_key_values, |
|
|
|
|
hidden_states=outputs.hidden_states, |
|
|
|
|
attentions=outputs.attentions, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
return forward |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_command_seq_parallel_attention_forward(sp_mode, sp_size, sp_group, use_flash_attention): |
|
|
|
|
from transformers.models.cohere.modeling_cohere import apply_rotary_pos_emb |
|
|
|
|
|
|
|
|
|
def get_command_flash_attention_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None): |
|
|
|
|
def forward( |
|
|
|
|
self, |
|
|
|
|
hidden_states: torch.Tensor, |
|
|
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
|
|
|
past_key_value: Optional[Cache] = None, |
|
|
|
|
output_attentions: bool = False, |
|
|
|
|
use_cache: bool = False, |
|
|
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
|
**kwargs, |
|
|
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: |
|
|
|
|
if sp_mode is not None: |
|
|
|
|
assert sp_mode in ["all_to_all", "split_gather", "ring"], "Invalid sp_mode" |
|
|
|
|
assert (sp_size is not None) and ( |
|
|
|
|
sp_group is not None |
|
|
|
|
), "Must specify sp_size and sp_group for sequence parallel" |
|
|
|
|
if "padding_mask" in kwargs: |
|
|
|
|
warnings.warn( |
|
|
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
# sp: modify sp_len when sequence parallel mode is ring |
|
|
|
|
if sp_mode in ["split_gather", "ring"]: |
|
|
|
@ -468,29 +377,46 @@ def get_command_seq_parallel_attention_forward(sp_mode, sp_size, sp_group, use_f
|
|
|
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
|
|
past_key_value = getattr(self, "past_key_value", past_key_value) |
|
|
|
|
kv_seq_len = key_states.shape[-2] |
|
|
|
|
if past_key_value is not None: |
|
|
|
|
if self.layer_idx is None: |
|
|
|
|
raise ValueError( |
|
|
|
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
|
|
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
|
|
|
"with a layer index." |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
|
|
|
|
|
|
cos, sin = self.rotary_emb(value_states, position_ids) |
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
|
|
|
|
if past_key_value is not None: |
|
|
|
|
# sin and cos are specific to RoPE models; cache_position needed for the static cache |
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
|
|
|
|
# repeat k/v heads if n_kv_heads < n_heads |
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
|
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
|
if use_flash_attention: |
|
|
|
|
|
|
|
|
|
if shard_config.enable_flash_attention: |
|
|
|
|
assert isinstance(attention_mask, dict), "Flash Attention Error: attention_mask should be a dict." |
|
|
|
|
attn_output = ColoAttention.attention(query_states, key_states, value_states, **attention_mask) |
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
|
else: |
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
|
|
|
|
|
|
if attention_mask is not None: # no matter the length, we just slice it |
|
|
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
|
|
|
raise ValueError( |
|
|
|
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
|
|
|
f" {attn_weights.size()}" |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
|
|
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
|
|
|
raise ValueError( |
|
|
|
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
|
|
|
) |
|
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
|
|
|
|
# upcast attention to fp32 |
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
|
|
@ -502,25 +428,28 @@ def get_command_seq_parallel_attention_forward(sp_mode, sp_size, sp_group, use_f
|
|
|
|
|
f" {attn_output.size()}" |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim) |
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
# sp: all-to-all comminucation when introducing sequence parallel |
|
|
|
|
if sp_mode == "all_to_all": |
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim) |
|
|
|
|
attn_output = all_to_all_comm(attn_output, sp_group, scatter_dim=1, gather_dim=2) |
|
|
|
|
else: |
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
|
|
|
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
|
|
|
|
if not output_attentions or use_flash_attention: |
|
|
|
|
if not output_attentions: |
|
|
|
|
attn_weights = None |
|
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
|
|
return forward |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash_attention): |
|
|
|
|
def get_command_flash_attention_model_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None): |
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
def forward( |
|
|
|
|
self: CohereModel, |
|
|
|
|
self, |
|
|
|
|
input_ids: torch.LongTensor = None, |
|
|
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
|
@ -537,18 +466,14 @@ def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash
|
|
|
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
|
|
) |
|
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
|
# retrieve input_ids and inputs_embeds |
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
|
|
raise ValueError( |
|
|
|
|
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time, and must specify either one" |
|
|
|
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
if inputs_embeds is None: |
|
|
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
|
|
|
|
if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training: |
|
|
|
|
if use_cache: |
|
|
|
|
logger.warning_once( |
|
|
|
@ -556,7 +481,11 @@ def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash
|
|
|
|
|
) |
|
|
|
|
use_cache = False |
|
|
|
|
|
|
|
|
|
if inputs_embeds is None: |
|
|
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
|
|
|
|
past_seen_tokens = 0 |
|
|
|
|
seq_len = inputs_embeds.shape[1] |
|
|
|
|
if use_cache: # kept for BC (cache positions) |
|
|
|
|
if not isinstance(past_key_values, StaticCache): |
|
|
|
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
|
|
@ -564,18 +493,18 @@ def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash
|
|
|
|
|
if cache_position is None: |
|
|
|
|
if isinstance(past_key_values, StaticCache): |
|
|
|
|
raise ValueError("cache_position is a required argument when using StaticCache.") |
|
|
|
|
cache_position = torch.arange( |
|
|
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
|
|
) |
|
|
|
|
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_len, device=inputs_embeds.device) |
|
|
|
|
|
|
|
|
|
if position_ids is None: |
|
|
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
if use_flash_attention: |
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
mask_shape = (hidden_states.shape[0], 1, past_seen_tokens, past_seen_tokens) |
|
|
|
|
|
|
|
|
|
# in this case, attention_mask is a dict rather than a tensor |
|
|
|
|
if shard_config.enable_flash_attention: |
|
|
|
|
mask_shape = (inputs_embeds.shape[0], 1, past_seen_tokens + seq_len, past_seen_tokens + seq_len) |
|
|
|
|
attention_mask = ColoAttention.prepare_attn_kwargs( |
|
|
|
|
mask_shape, |
|
|
|
|
hidden_states.dtype, |
|
|
|
|
hidden_states.device, |
|
|
|
|
inputs_embeds.dtype, |
|
|
|
|
inputs_embeds.device, |
|
|
|
|
q_padding_mask=attention_mask, |
|
|
|
|
is_causal=True, |
|
|
|
|
) |
|
|
|
@ -586,32 +515,26 @@ def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash
|
|
|
|
|
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group) |
|
|
|
|
elif sp_mode == "all_to_all": |
|
|
|
|
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group, 1 / sp_size) |
|
|
|
|
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
|
# decoder layers |
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
|
all_self_attns = () if output_attentions else None |
|
|
|
|
next_decoder_cache = () if use_cache else None |
|
|
|
|
next_decoder_cache = None |
|
|
|
|
|
|
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
|
|
|
for decoder_layer in self.layers: |
|
|
|
|
if output_hidden_states: |
|
|
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
|
|
|
|
if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training: |
|
|
|
|
|
|
|
|
|
def create_custom_forward(module): |
|
|
|
|
def custom_forward(*inputs): |
|
|
|
|
# None for past_key_value |
|
|
|
|
return module(*inputs, past_key_value=past_key_values, output_attentions=output_attentions) |
|
|
|
|
|
|
|
|
|
return custom_forward |
|
|
|
|
|
|
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
|
|
|
create_custom_forward(decoder_layer), |
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
|
layer_outputs = self._gradient_checkpointing_func( |
|
|
|
|
decoder_layer.__call__, |
|
|
|
|
hidden_states, |
|
|
|
|
attention_mask, |
|
|
|
|
position_ids, |
|
|
|
|
past_key_values, |
|
|
|
|
output_attentions, |
|
|
|
|
use_cache, |
|
|
|
|
cache_position, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
else: |
|
|
|
@ -628,11 +551,7 @@ def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
|
|
|
|
if use_cache: |
|
|
|
|
next_decoder_cache = ( |
|
|
|
|
next_decoder_cache.to_legacy_cache() |
|
|
|
|
if isinstance(next_decoder_cache, Cache) |
|
|
|
|
else next_decoder_cache |
|
|
|
|
) |
|
|
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
|
|
|
|
|
|
if output_attentions: |
|
|
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
@ -648,7 +567,11 @@ def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash
|
|
|
|
|
if output_hidden_states: |
|
|
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
|
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
|
|
|
next_cache = None |
|
|
|
|
if use_cache: |
|
|
|
|
next_cache = ( |
|
|
|
|
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache |
|
|
|
|
) |
|
|
|
|
if not return_dict: |
|
|
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
|
|
|
|
|
|
|
@ -660,3 +583,104 @@ def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
return forward |
|
|
|
|
|
|
|
|
|
def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig): |
|
|
|
|
from transformers import CohereForCausalLM |
|
|
|
|
|
|
|
|
|
def forward( |
|
|
|
|
self: CohereForCausalLM, |
|
|
|
|
input_ids: torch.LongTensor = None, |
|
|
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
|
|
use_cache: Optional[bool] = None, |
|
|
|
|
output_attentions: Optional[bool] = None, |
|
|
|
|
output_hidden_states: Optional[bool] = None, |
|
|
|
|
return_dict: Optional[bool] = None, |
|
|
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
|
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
|
r""" |
|
|
|
|
Args: |
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
|
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
|
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
|
|
|
|
|
|
Returns: |
|
|
|
|
|
|
|
|
|
Example: |
|
|
|
|
|
|
|
|
|
```python |
|
|
|
|
>>> from transformers import AutoTokenizer, CohereForCausalLM |
|
|
|
|
|
|
|
|
|
>>> model = CohereForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
|
|
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
|
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
|
|
|
|
|
|
>>> # Generate |
|
|
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
|
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
|
|
|
```""" |
|
|
|
|
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
|
|
output_hidden_states = ( |
|
|
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
|
|
) |
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) |
|
|
|
|
outputs = self.model( |
|
|
|
|
input_ids=input_ids, |
|
|
|
|
attention_mask=attention_mask, |
|
|
|
|
position_ids=position_ids, |
|
|
|
|
past_key_values=past_key_values, |
|
|
|
|
inputs_embeds=inputs_embeds, |
|
|
|
|
use_cache=use_cache, |
|
|
|
|
output_attentions=output_attentions, |
|
|
|
|
output_hidden_states=output_hidden_states, |
|
|
|
|
return_dict=return_dict, |
|
|
|
|
cache_position=cache_position, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
hidden_states = outputs[0] |
|
|
|
|
|
|
|
|
|
logits = self.lm_head(hidden_states) |
|
|
|
|
logits = logits * self.logit_scale |
|
|
|
|
logits = logits.float() |
|
|
|
|
|
|
|
|
|
loss = None |
|
|
|
|
if labels is not None: |
|
|
|
|
# Shift so that tokens < n predict n |
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
|
shift_labels = shift_labels.view(-1) |
|
|
|
|
# Enable model parallelism |
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
|
|
new_vocab_size = logits.shape[-1] |
|
|
|
|
shift_logits = shift_logits.view(-1, new_vocab_size) |
|
|
|
|
loss = cross_entropy_1d( |
|
|
|
|
shift_logits, |
|
|
|
|
shift_labels, |
|
|
|
|
process_group=shard_config.tensor_parallel_process_group, |
|
|
|
|
vocab_size=self.lm_head.out_features, |
|
|
|
|
dtype=self.model.dtype, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
if not return_dict: |
|
|
|
|
output = (logits,) + outputs[1:] |
|
|
|
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
|
|
loss=loss, |
|
|
|
|
logits=logits, |
|
|
|
|
past_key_values=outputs.past_key_values, |
|
|
|
|
hidden_states=outputs.hidden_states, |
|
|
|
|
attentions=outputs.attentions, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
return forward |