Browse Source

rebase master llama change

pull/5818/head
GuangyaoZhang 5 months ago
parent
commit
a83a2336e8
  1. 336
      colossalai/shardformer/modeling/command.py
  2. 91
      colossalai/shardformer/policies/command.py

336
colossalai/shardformer/modeling/command.py

@ -1,13 +1,15 @@
import math import math
import warnings
from typing import List, Optional, Tuple, Union from typing import List, Optional, Tuple, Union
import torch import torch
import torch.nn.functional as F
import torch.utils.checkpoint import torch.utils.checkpoint
from torch import nn from torch import nn
from torch.nn import CrossEntropyLoss from torch.nn import CrossEntropyLoss
from transformers.cache_utils import Cache, DynamicCache from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.models.cohere.modeling_cohere import CohereForCausalLM, CohereModel, StaticCache, repeat_kv from transformers.models.cohere.modeling_cohere import CohereForCausalLM, CohereModel, StaticCache, apply_rotary_pos_emb, repeat_kv
from transformers.utils import logging from transformers.utils import logging
from colossalai.pipeline.stage_manager import PipelineStageManager from colossalai.pipeline.stage_manager import PipelineStageManager
@ -333,121 +335,28 @@ class CommandPipelineForwards:
return {"hidden_states": hidden_states} return {"hidden_states": hidden_states}
def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig): def get_command_flash_attention_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None):
from transformers import CohereForCausalLM
def forward(
self: CohereForCausalLM,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, CohereForCausalLM
>>> model = CohereForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits * self.logit_scale
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
new_vocab_size = logits.shape[-1]
shift_logits = shift_logits.view(-1, new_vocab_size)
loss = cross_entropy_1d(
shift_logits,
shift_labels,
process_group=shard_config.tensor_parallel_process_group,
vocab_size=self.lm_head.out_features,
dtype=self.model.dtype,
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
return forward
def get_command_seq_parallel_attention_forward(sp_mode, sp_size, sp_group, use_flash_attention):
from transformers.models.cohere.modeling_cohere import apply_rotary_pos_emb
def forward( def forward(
self, self,
hidden_states: torch.Tensor, hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None, past_key_value: Optional[Cache] = None,
output_attentions: bool = False, output_attentions: bool = False,
use_cache: bool = False, use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: **kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if sp_mode is not None:
assert sp_mode in ["all_to_all", "split_gather", "ring"], "Invalid sp_mode"
assert (sp_size is not None) and (
sp_group is not None
), "Must specify sp_size and sp_group for sequence parallel"
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size() bsz, q_len, _ = hidden_states.size()
# sp: modify sp_len when sequence parallel mode is ring # sp: modify sp_len when sequence parallel mode is ring
if sp_mode in ["split_gather", "ring"]: if sp_mode in ["split_gather", "ring"]:
@ -468,29 +377,46 @@ def get_command_seq_parallel_attention_forward(sp_mode, sp_size, sp_group, use_f
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
past_key_value = getattr(self, "past_key_value", past_key_value) kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, position_ids) cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None: if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads # repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups) key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups)
if use_flash_attention:
if shard_config.enable_flash_attention:
assert isinstance(attention_mask, dict), "Flash Attention Error: attention_mask should be a dict." assert isinstance(attention_mask, dict), "Flash Attention Error: attention_mask should be a dict."
attn_output = ColoAttention.attention(query_states, key_states, value_states, **attention_mask) attn_output = ColoAttention.attention(query_states, key_states, value_states, **attention_mask)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
else: else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] raise ValueError(
attn_weights = attn_weights + causal_mask f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32 # upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
@ -502,25 +428,28 @@ def get_command_seq_parallel_attention_forward(sp_mode, sp_size, sp_group, use_f
f" {attn_output.size()}" f" {attn_output.size()}"
) )
attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
# sp: all-to-all comminucation when introducing sequence parallel # sp: all-to-all comminucation when introducing sequence parallel
if sp_mode == "all_to_all": if sp_mode == "all_to_all":
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
attn_output = all_to_all_comm(attn_output, sp_group, scatter_dim=1, gather_dim=2) attn_output = all_to_all_comm(attn_output, sp_group, scatter_dim=1, gather_dim=2)
else:
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output) attn_output = self.o_proj(attn_output)
if not output_attentions or use_flash_attention: if not output_attentions:
attn_weights = None attn_weights = None
return attn_output, attn_weights, past_key_value return attn_output, attn_weights, past_key_value
return forward return forward
def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash_attention): def get_command_flash_attention_model_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None):
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
def forward( def forward(
self: CohereModel, self,
input_ids: torch.LongTensor = None, input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
@ -537,18 +466,14 @@ def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
) )
use_cache = use_cache if use_cache is not None else self.config.use_cache use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds # retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None: if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError( raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time, and must specify either one" "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
) )
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training: if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training:
if use_cache: if use_cache:
logger.warning_once( logger.warning_once(
@ -556,7 +481,11 @@ def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash
) )
use_cache = False use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
past_seen_tokens = 0 past_seen_tokens = 0
seq_len = inputs_embeds.shape[1]
if use_cache: # kept for BC (cache positions) if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, StaticCache): if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_key_values = DynamicCache.from_legacy_cache(past_key_values)
@ -564,18 +493,18 @@ def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash
if cache_position is None: if cache_position is None:
if isinstance(past_key_values, StaticCache): if isinstance(past_key_values, StaticCache):
raise ValueError("cache_position is a required argument when using StaticCache.") raise ValueError("cache_position is a required argument when using StaticCache.")
cache_position = torch.arange( cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_len, device=inputs_embeds.device)
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None: if position_ids is None:
position_ids = cache_position.unsqueeze(0) position_ids = cache_position.unsqueeze(0)
if use_flash_attention:
hidden_states = inputs_embeds # in this case, attention_mask is a dict rather than a tensor
mask_shape = (hidden_states.shape[0], 1, past_seen_tokens, past_seen_tokens) if shard_config.enable_flash_attention:
mask_shape = (inputs_embeds.shape[0], 1, past_seen_tokens + seq_len, past_seen_tokens + seq_len)
attention_mask = ColoAttention.prepare_attn_kwargs( attention_mask = ColoAttention.prepare_attn_kwargs(
mask_shape, mask_shape,
hidden_states.dtype, inputs_embeds.dtype,
hidden_states.device, inputs_embeds.device,
q_padding_mask=attention_mask, q_padding_mask=attention_mask,
is_causal=True, is_causal=True,
) )
@ -586,32 +515,26 @@ def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group) inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group)
elif sp_mode == "all_to_all": elif sp_mode == "all_to_all":
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group, 1 / sp_size) inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group, 1 / sp_size)
hidden_states = inputs_embeds hidden_states = inputs_embeds
# decoder layers # decoder layers
all_hidden_states = () if output_hidden_states else None all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None next_decoder_cache = None
for idx, decoder_layer in enumerate(self.layers): for decoder_layer in self.layers:
if output_hidden_states: if output_hidden_states:
all_hidden_states += (hidden_states,) all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training: layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, past_key_value=past_key_values, output_attentions=output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states, hidden_states,
attention_mask, attention_mask,
position_ids, position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
) )
else: else:
@ -628,11 +551,7 @@ def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash
hidden_states = layer_outputs[0] hidden_states = layer_outputs[0]
if use_cache: if use_cache:
next_decoder_cache = ( next_decoder_cache = layer_outputs[2 if output_attentions else 1]
next_decoder_cache.to_legacy_cache()
if isinstance(next_decoder_cache, Cache)
else next_decoder_cache
)
if output_attentions: if output_attentions:
all_self_attns += (layer_outputs[1],) all_self_attns += (layer_outputs[1],)
@ -648,7 +567,11 @@ def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash
if output_hidden_states: if output_hidden_states:
all_hidden_states += (hidden_states,) all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None next_cache = None
if use_cache:
next_cache = (
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
)
if not return_dict: if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
@ -660,3 +583,104 @@ def get_command_seq_parallel_model_forward(sp_mode, sp_size, sp_group, use_flash
) )
return forward return forward
def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig):
from transformers import CohereForCausalLM
def forward(
self: CohereForCausalLM,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, CohereForCausalLM
>>> model = CohereForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits * self.logit_scale
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
new_vocab_size = logits.shape[-1]
shift_logits = shift_logits.view(-1, new_vocab_size)
loss = cross_entropy_1d(
shift_logits,
shift_labels,
process_group=shard_config.tensor_parallel_process_group,
vocab_size=self.lm_head.out_features,
dtype=self.model.dtype,
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
return forward

91
colossalai/shardformer/policies/command.py

@ -19,8 +19,8 @@ from colossalai.shardformer.layer import (
from ..modeling.command import ( from ..modeling.command import (
CommandPipelineForwards, CommandPipelineForwards,
get_command_seq_parallel_attention_forward, get_command_flash_attention_forward,
get_command_seq_parallel_model_forward, get_command_flash_attention_model_forward,
get_lm_forward_with_dist_cross_entropy, get_lm_forward_with_dist_cross_entropy,
) )
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
@ -80,38 +80,7 @@ class CommandPolicy(Policy):
) )
sp_partial_derived = sp_mode in ["split_gather", "ring"] sp_partial_derived = sp_mode in ["split_gather", "ring"]
use_flash_attention = self.shard_config.enable_flash_attention if sp_mode == "all_to_all":
# Currently sp cannot to be used with flashattention
if sp_mode in ["split_gather", "ring", "all_to_all"]:
if use_flash_attention:
warnings.warn(
f"Sequence parallelism mode {sp_mode} need to be used with FlashAttention, will disable FlashAttention automatically."
)
use_flash_attention = False
if sp_mode in ["split_gather", "ring"]:
self.append_or_create_method_replacement(
description={
"forward": get_command_seq_parallel_model_forward(
sp_mode=sp_mode,
sp_size=sp_size,
sp_group=sp_group,
use_flash_attention=use_flash_attention,
),
},
policy=policy,
target_key=CohereModel,
)
self.append_or_create_method_replacement(
description={
"forward": get_command_seq_parallel_attention_forward(
sp_mode, sp_size, sp_group, use_flash_attention=use_flash_attention
),
},
policy=policy,
target_key=attn_cls,
)
elif sp_mode == "all_to_all":
decoder_attribute_replacement = { decoder_attribute_replacement = {
"num_heads": self.model.config.num_attention_heads // sp_size, "num_heads": self.model.config.num_attention_heads // sp_size,
} }
@ -121,27 +90,28 @@ class CommandPolicy(Policy):
policy[attn_cls] = ModulePolicyDescription( policy[attn_cls] = ModulePolicyDescription(
attribute_replacement=decoder_attribute_replacement, attribute_replacement=decoder_attribute_replacement,
) )
if self.shard_config.enable_flash_attention or self.shard_config.enable_sequence_parallelism:
self.append_or_create_method_replacement( self.append_or_create_method_replacement(
description={ description={
"forward": get_command_seq_parallel_attention_forward( "forward": get_command_flash_attention_forward(self.shard_config, sp_mode, sp_size, sp_group),
sp_mode, sp_size, sp_group, use_flash_attention=use_flash_attention
),
}, },
policy=policy, policy=policy,
target_key=attn_cls, target_key=attn_cls,
) )
self.append_or_create_method_replacement( if self.pipeline_stage_manager is None:
description={ self.append_or_create_method_replacement(
"forward": get_command_seq_parallel_model_forward( description={
sp_mode=sp_mode, "forward": get_command_flash_attention_model_forward(
sp_size=sp_size, self.shard_config,
sp_group=sp_group, sp_mode=sp_mode,
use_flash_attention=use_flash_attention, sp_size=sp_size,
), sp_group=sp_group,
}, ),
policy=policy, },
target_key=CohereModel, policy=policy,
) target_key=CohereModel,
)
if self.shard_config.enable_tensor_parallelism: if self.shard_config.enable_tensor_parallelism:
assert ( assert (
@ -236,29 +206,6 @@ class CommandPolicy(Policy):
target_key=CohereModel, target_key=CohereModel,
) )
# use flash attention
if use_flash_attention:
self.append_or_create_method_replacement(
description={
"forward": get_command_seq_parallel_attention_forward(
sp_mode, sp_group, sp_size, use_flash_attention=use_flash_attention
),
},
policy=policy,
target_key=attn_cls,
)
if self.pipeline_stage_manager is None:
# replace Command model forward method
self.append_or_create_method_replacement(
description={
"forward": get_command_seq_parallel_model_forward(
sp_mode, sp_size, sp_group, use_flash_attention=use_flash_attention
),
},
policy=policy,
target_key=CohereModel,
)
return policy return policy
def postprocess(self): def postprocess(self):

Loading…
Cancel
Save