mirror of https://github.com/hpcaitech/ColossalAI
[Gemini] rename hooks related to runtime mem tracer (#2076)
parent
40b7d55bf3
commit
a7adad9ccb
|
@ -1,7 +1,7 @@
|
|||
import torch.nn
|
||||
|
||||
from colossalai.gemini.memory_tracer.model_data_memtracer import GLOBAL_CUDA_MEM_INFO
|
||||
from colossalai.gemini.ophooks.param_trace_hook import GradHook, ParamTracerHook
|
||||
from colossalai.gemini.ophooks.runtime_mem_tracer_hook import GradMemTracerHook, ParamMemTracerHook
|
||||
from colossalai.nn.parallel.data_parallel import _cast_float
|
||||
from colossalai.tensor.param_op_hook import ParamOpHookManager
|
||||
|
||||
|
@ -14,8 +14,8 @@ class RuntimeMemTracer():
|
|||
super().__init__()
|
||||
self.module = module
|
||||
self.dtype = dtype
|
||||
self.param_op_hook = ParamTracerHook()
|
||||
self.grad_hook = GradHook(module)
|
||||
self.param_op_hook = ParamMemTracerHook()
|
||||
self.grad_hook = GradMemTracerHook(module)
|
||||
self.cpu_param_data_dict = {}
|
||||
|
||||
for p in module.parameters():
|
||||
|
|
|
@ -1,11 +1,12 @@
|
|||
import torch
|
||||
|
||||
from colossalai.registry import OPHOOKS
|
||||
|
||||
from . import BaseOpHook
|
||||
|
||||
|
||||
@OPHOOKS.register_module
|
||||
class ShardGradHook(BaseOpHook):
|
||||
class ShardGradMemTracerHook(BaseOpHook):
|
||||
"""
|
||||
A hook to process sharded param before and afther FWD and BWD operator executing.
|
||||
"""
|
||||
|
|
|
@ -1,100 +0,0 @@
|
|||
import torch
|
||||
|
||||
from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor
|
||||
from colossalai.gemini.ophooks import BaseOpHook
|
||||
|
||||
|
||||
class MemTracerOpHook(BaseOpHook):
|
||||
"""
|
||||
TODO() what if parameters are sharded by multiple submodules.
|
||||
register buff on its father node
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.mem_monitor = SyncCudaMemoryMonitor()
|
||||
self._cur_non_model_data_vol = 0
|
||||
self._non_model_data_list = []
|
||||
self._cur_model_data_vol = 0
|
||||
|
||||
def _move_module_to_dev(self, module, dev: str) -> int:
|
||||
"""
|
||||
move module to target dev
|
||||
Args:
|
||||
module (torch.nn.Module): a PyTorch module
|
||||
dev (torch.device): the target device
|
||||
Returns:
|
||||
int: the data volume of this module on the cuda
|
||||
"""
|
||||
assert isinstance(dev, str), f"device should be a str not torch.device"
|
||||
comm_volume = 0
|
||||
for p in module.parameters():
|
||||
if p.data.device.type != dev:
|
||||
p.data = p.data.to(dev)
|
||||
comm_volume += p.data.numel() * p.data.element_size()
|
||||
if p.grad is not None:
|
||||
if p.grad.device.type != dev:
|
||||
p.grad = p.grad.to(dev)
|
||||
comm_volume += p.grad.numel() * p.grad.element_size()
|
||||
|
||||
for buf in module.buffers():
|
||||
if buf.device.type != dev:
|
||||
buf.data = buf.data.to(dev)
|
||||
comm_volume += buf.data.numel() * buf.data.element_size()
|
||||
|
||||
if dev == 'cuda':
|
||||
self._cur_model_data_vol = comm_volume
|
||||
|
||||
return comm_volume
|
||||
|
||||
def pre_fwd_exec(self, module: torch.nn.Module, *args):
|
||||
if module.training:
|
||||
cuda_volume = self.mem_monitor.finish()
|
||||
comm_volume = self._move_module_to_dev(module, 'cuda')
|
||||
self.mem_monitor.start()
|
||||
# print(f'FWD PRE {module.__class__.__name__} cuda used {(cuda_volume) / 1e6} MB')
|
||||
|
||||
def post_fwd_exec(self, module: torch.nn.Module, *args):
|
||||
if module.training:
|
||||
cuda_volume = self.mem_monitor.finish()
|
||||
comm_volume = self._move_module_to_dev(module, 'cpu')
|
||||
self._non_model_data_list.append(cuda_volume - comm_volume)
|
||||
# print(f'FWD POST {module.__class__.__name__} cuda used {(cuda_volume) / 1e6} MB, non-model data used {(cuda_volume - comm_volume) / 1e6} MB')
|
||||
|
||||
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
|
||||
assert isinstance(module, torch.nn.Module)
|
||||
if module.training:
|
||||
cuda_volume = self.mem_monitor.finish()
|
||||
self._move_module_to_dev(module, 'cuda')
|
||||
self.mem_monitor.start()
|
||||
# print(f'BWD PRE {module.__class__.__name__}')
|
||||
|
||||
def post_bwd_exec(self, module: torch.nn.Module, input):
|
||||
# bwd Op will generate grad. comm_volume is grad + data volume on cuda.
|
||||
assert isinstance(module, torch.nn.Module)
|
||||
if module.training:
|
||||
cuda_volume = self.mem_monitor.finish()
|
||||
comm_volume = self._move_module_to_dev(module, 'cpu')
|
||||
self._non_model_data_list.append(cuda_volume - comm_volume)
|
||||
# print(f'BWD POST {module.__class__.__name__} {cuda_volume / 1e6} MB, non-model data used {(cuda_volume - comm_volume) / 1e6} MB')
|
||||
|
||||
def pre_iter(self):
|
||||
pass
|
||||
|
||||
def post_iter(self):
|
||||
self.mem_monitor.finish()
|
||||
# print(f'post_iter')
|
||||
|
||||
def print_non_model_data(self):
|
||||
print(self._non_model_data_list)
|
||||
|
||||
def save_results(self, filename):
|
||||
self.mem_monitor.save(filename)
|
||||
|
||||
def show_mem_stats(self):
|
||||
start_timestamp = min(self.mem_monitor.time_stamps)
|
||||
self.mem_monitor.time_stamps = [elem - start_timestamp for elem in self.mem_monitor.time_stamps]
|
||||
min_mem_used = min(self.mem_monitor.mem_stats)
|
||||
self.mem_monitor.mem_stats = [elem - min_mem_used for elem in self.mem_monitor.mem_stats]
|
||||
print(self.mem_monitor.time_stamps)
|
||||
print(self.mem_monitor.mem_stats)
|
|
@ -6,9 +6,9 @@ from typing import List
|
|||
import torch
|
||||
|
||||
from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor
|
||||
from colossalai.tensor.param_op_hook import ParamOpHook
|
||||
from colossalai.gemini.tensor_utils import free_storage, alloc_storage
|
||||
from colossalai.gemini.memory_tracer.model_data_memtracer import GLOBAL_CUDA_MEM_INFO
|
||||
from colossalai.gemini.tensor_utils import alloc_storage, free_storage
|
||||
from colossalai.tensor.param_op_hook import ParamOpHook
|
||||
|
||||
|
||||
class TrainingPhase(Enum):
|
||||
|
@ -16,7 +16,8 @@ class TrainingPhase(Enum):
|
|||
BACKWARD = 1
|
||||
|
||||
|
||||
class GradHook():
|
||||
class GradMemTracerHook():
|
||||
|
||||
def __init__(self, module: torch.nn.Module):
|
||||
self.module = module
|
||||
self.grad_hook_list = []
|
||||
|
@ -38,7 +39,7 @@ class GradHook():
|
|||
hook.remove()
|
||||
|
||||
|
||||
class ParamTracerHook(ParamOpHook):
|
||||
class ParamMemTracerHook(ParamOpHook):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
@ -57,7 +58,9 @@ class ParamTracerHook(ParamOpHook):
|
|||
if cur_dev == "cpu":
|
||||
if p.grad is not None and p.grad.device.type == "cpu":
|
||||
raise NotImplementedError("Only run in forward propagation")
|
||||
p.data = torch.empty(p.data.shape, device="cuda", dtype=p.data.dtype,
|
||||
p.data = torch.empty(p.data.shape,
|
||||
device="cuda",
|
||||
dtype=p.data.dtype,
|
||||
requires_grad=p.data.requires_grad)
|
||||
elif cur_dev == "cuda":
|
||||
alloc_storage(p.data)
|
|
@ -29,7 +29,7 @@ def test_runtime_mem_tracer():
|
|||
model_builder, train_dataloader, _, _, criterion = get_components_func()
|
||||
|
||||
with ColoInitContext(device=torch.device('cpu')):
|
||||
model = model_builder(checkpoint=True)
|
||||
model = model_builder(checkpoint=False)
|
||||
|
||||
model_bk = deepcopy(model)
|
||||
runtime_mem_tracer = RuntimeMemTracer(model)
|
||||
|
@ -47,7 +47,7 @@ def test_runtime_mem_tracer():
|
|||
|
||||
cuda_non_model_data_list = np.array(GLOBAL_CUDA_MEM_INFO.non_model_data_list) / 1024**2
|
||||
print("cuda_non_model_data_list", len(cuda_non_model_data_list))
|
||||
# print(GLOBAL_CUDA_MEM_INFO.non_model_data_list)
|
||||
print(GLOBAL_CUDA_MEM_INFO.non_model_data_list)
|
||||
|
||||
del model
|
||||
|
||||
|
|
Loading…
Reference in New Issue