[Gemini] rename hooks related to runtime mem tracer (#2076)

pull/2077/head
Jiarui Fang 2022-12-05 15:00:03 +08:00 committed by GitHub
parent 40b7d55bf3
commit a7adad9ccb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 15 additions and 111 deletions

View File

@ -1,7 +1,7 @@
import torch.nn
from colossalai.gemini.memory_tracer.model_data_memtracer import GLOBAL_CUDA_MEM_INFO
from colossalai.gemini.ophooks.param_trace_hook import GradHook, ParamTracerHook
from colossalai.gemini.ophooks.runtime_mem_tracer_hook import GradMemTracerHook, ParamMemTracerHook
from colossalai.nn.parallel.data_parallel import _cast_float
from colossalai.tensor.param_op_hook import ParamOpHookManager
@ -14,8 +14,8 @@ class RuntimeMemTracer():
super().__init__()
self.module = module
self.dtype = dtype
self.param_op_hook = ParamTracerHook()
self.grad_hook = GradHook(module)
self.param_op_hook = ParamMemTracerHook()
self.grad_hook = GradMemTracerHook(module)
self.cpu_param_data_dict = {}
for p in module.parameters():

View File

@ -1,11 +1,12 @@
import torch
from colossalai.registry import OPHOOKS
from . import BaseOpHook
@OPHOOKS.register_module
class ShardGradHook(BaseOpHook):
class ShardGradMemTracerHook(BaseOpHook):
"""
A hook to process sharded param before and afther FWD and BWD operator executing.
"""

View File

@ -1,100 +0,0 @@
import torch
from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor
from colossalai.gemini.ophooks import BaseOpHook
class MemTracerOpHook(BaseOpHook):
"""
TODO() what if parameters are sharded by multiple submodules.
register buff on its father node
"""
def __init__(self):
super().__init__()
self.mem_monitor = SyncCudaMemoryMonitor()
self._cur_non_model_data_vol = 0
self._non_model_data_list = []
self._cur_model_data_vol = 0
def _move_module_to_dev(self, module, dev: str) -> int:
"""
move module to target dev
Args:
module (torch.nn.Module): a PyTorch module
dev (torch.device): the target device
Returns:
int: the data volume of this module on the cuda
"""
assert isinstance(dev, str), f"device should be a str not torch.device"
comm_volume = 0
for p in module.parameters():
if p.data.device.type != dev:
p.data = p.data.to(dev)
comm_volume += p.data.numel() * p.data.element_size()
if p.grad is not None:
if p.grad.device.type != dev:
p.grad = p.grad.to(dev)
comm_volume += p.grad.numel() * p.grad.element_size()
for buf in module.buffers():
if buf.device.type != dev:
buf.data = buf.data.to(dev)
comm_volume += buf.data.numel() * buf.data.element_size()
if dev == 'cuda':
self._cur_model_data_vol = comm_volume
return comm_volume
def pre_fwd_exec(self, module: torch.nn.Module, *args):
if module.training:
cuda_volume = self.mem_monitor.finish()
comm_volume = self._move_module_to_dev(module, 'cuda')
self.mem_monitor.start()
# print(f'FWD PRE {module.__class__.__name__} cuda used {(cuda_volume) / 1e6} MB')
def post_fwd_exec(self, module: torch.nn.Module, *args):
if module.training:
cuda_volume = self.mem_monitor.finish()
comm_volume = self._move_module_to_dev(module, 'cpu')
self._non_model_data_list.append(cuda_volume - comm_volume)
# print(f'FWD POST {module.__class__.__name__} cuda used {(cuda_volume) / 1e6} MB, non-model data used {(cuda_volume - comm_volume) / 1e6} MB')
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
assert isinstance(module, torch.nn.Module)
if module.training:
cuda_volume = self.mem_monitor.finish()
self._move_module_to_dev(module, 'cuda')
self.mem_monitor.start()
# print(f'BWD PRE {module.__class__.__name__}')
def post_bwd_exec(self, module: torch.nn.Module, input):
# bwd Op will generate grad. comm_volume is grad + data volume on cuda.
assert isinstance(module, torch.nn.Module)
if module.training:
cuda_volume = self.mem_monitor.finish()
comm_volume = self._move_module_to_dev(module, 'cpu')
self._non_model_data_list.append(cuda_volume - comm_volume)
# print(f'BWD POST {module.__class__.__name__} {cuda_volume / 1e6} MB, non-model data used {(cuda_volume - comm_volume) / 1e6} MB')
def pre_iter(self):
pass
def post_iter(self):
self.mem_monitor.finish()
# print(f'post_iter')
def print_non_model_data(self):
print(self._non_model_data_list)
def save_results(self, filename):
self.mem_monitor.save(filename)
def show_mem_stats(self):
start_timestamp = min(self.mem_monitor.time_stamps)
self.mem_monitor.time_stamps = [elem - start_timestamp for elem in self.mem_monitor.time_stamps]
min_mem_used = min(self.mem_monitor.mem_stats)
self.mem_monitor.mem_stats = [elem - min_mem_used for elem in self.mem_monitor.mem_stats]
print(self.mem_monitor.time_stamps)
print(self.mem_monitor.mem_stats)

View File

@ -6,9 +6,9 @@ from typing import List
import torch
from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor
from colossalai.tensor.param_op_hook import ParamOpHook
from colossalai.gemini.tensor_utils import free_storage, alloc_storage
from colossalai.gemini.memory_tracer.model_data_memtracer import GLOBAL_CUDA_MEM_INFO
from colossalai.gemini.tensor_utils import alloc_storage, free_storage
from colossalai.tensor.param_op_hook import ParamOpHook
class TrainingPhase(Enum):
@ -16,7 +16,8 @@ class TrainingPhase(Enum):
BACKWARD = 1
class GradHook():
class GradMemTracerHook():
def __init__(self, module: torch.nn.Module):
self.module = module
self.grad_hook_list = []
@ -38,7 +39,7 @@ class GradHook():
hook.remove()
class ParamTracerHook(ParamOpHook):
class ParamMemTracerHook(ParamOpHook):
def __init__(self) -> None:
super().__init__()
@ -57,7 +58,9 @@ class ParamTracerHook(ParamOpHook):
if cur_dev == "cpu":
if p.grad is not None and p.grad.device.type == "cpu":
raise NotImplementedError("Only run in forward propagation")
p.data = torch.empty(p.data.shape, device="cuda", dtype=p.data.dtype,
p.data = torch.empty(p.data.shape,
device="cuda",
dtype=p.data.dtype,
requires_grad=p.data.requires_grad)
elif cur_dev == "cuda":
alloc_storage(p.data)

View File

@ -29,7 +29,7 @@ def test_runtime_mem_tracer():
model_builder, train_dataloader, _, _, criterion = get_components_func()
with ColoInitContext(device=torch.device('cpu')):
model = model_builder(checkpoint=True)
model = model_builder(checkpoint=False)
model_bk = deepcopy(model)
runtime_mem_tracer = RuntimeMemTracer(model)
@ -47,7 +47,7 @@ def test_runtime_mem_tracer():
cuda_non_model_data_list = np.array(GLOBAL_CUDA_MEM_INFO.non_model_data_list) / 1024**2
print("cuda_non_model_data_list", len(cuda_non_model_data_list))
# print(GLOBAL_CUDA_MEM_INFO.non_model_data_list)
print(GLOBAL_CUDA_MEM_INFO.non_model_data_list)
del model