From a799ca343b13665661a5e95f5ad1523457bef2e2 Mon Sep 17 00:00:00 2001 From: digger yu Date: Sun, 7 Apr 2024 18:42:15 +0800 Subject: [PATCH] [fix] fix typo s/muiti-node /multi-node etc. (#5448) --- .../ColossalEval/colossal_eval/evaluate/gpt_evaluate.py | 2 +- applications/ColossalMoE/train.py | 6 +++--- .../ColossalQA/colossalqa/data_loader/document_loader.py | 2 +- .../ColossalQA/colossalqa/local/colossalcloud_llm.py | 2 +- applications/ColossalQA/colossalqa/local/llm.py | 6 +++--- .../colossalqa/retrieval_conversation_universal.py | 2 +- applications/ColossalQA/colossalqa/retriever.py | 2 +- applications/ColossalQA/colossalqa/utils.py | 2 +- examples/language/openmoe/model/modeling_openmoe.py | 2 +- examples/language/openmoe/train.py | 6 +++--- 10 files changed, 16 insertions(+), 16 deletions(-) diff --git a/applications/ColossalEval/colossal_eval/evaluate/gpt_evaluate.py b/applications/ColossalEval/colossal_eval/evaluate/gpt_evaluate.py index a0b1ed114..19907daaf 100644 --- a/applications/ColossalEval/colossal_eval/evaluate/gpt_evaluate.py +++ b/applications/ColossalEval/colossal_eval/evaluate/gpt_evaluate.py @@ -670,7 +670,7 @@ def calculate_scores_form_logprobs(logprobs: Dict[str, Any]) -> float: def calculate_scores_form_response(response: str, evaluation: Dict[str, Any]) -> int: """ Calculate the score from the response returned by gpt-3.5-turbo or gpt-4. - Different from text-davinci-003, this fuction directly calculates the score according to the plain response returned by gpt-3.5-turbo or gpt-4. + Different from text-davinci-003, this function directly calculates the score according to the plain response returned by gpt-3.5-turbo or gpt-4. Although text-davinci-003 can return log probabilities, it costs ten times as much as gpt-3.5-turbo. Args: diff --git a/applications/ColossalMoE/train.py b/applications/ColossalMoE/train.py index 99603282b..850236726 100644 --- a/applications/ColossalMoE/train.py +++ b/applications/ColossalMoE/train.py @@ -128,13 +128,13 @@ def parse_args(): parser.add_argument( "--comm_overlap", action="store_true", - help="Use communication overlap for MoE. Recommended to enable for muiti-node training.", + help="Use communication overlap for MoE. Recommended to enable for multi-node training.", ) # hierarchical all-to-all parser.add_argument( "--hierarchical_alltoall", action="store_true", - help="Use hierarchical all-to-all for MoE. Recommended to enable for muiti-node training.", + help="Use hierarchical all-to-all for MoE. Recommended to enable for multi-node training.", ) args = parser.parse_args() @@ -267,7 +267,7 @@ def main(): # ): # coordinator.print_on_master(f"Apply load balance") # apply_load_balance(model, optimizer) - # save ckeckpoint + # save checkpoint if (step + 1) % args.save_interval == 0: coordinator.print_on_master(f"Saving model checkpoint to {args.output_path}") save_checkpoint( diff --git a/applications/ColossalQA/colossalqa/data_loader/document_loader.py b/applications/ColossalQA/colossalqa/data_loader/document_loader.py index 4ddbf2b9d..ca0030621 100644 --- a/applications/ColossalQA/colossalqa/data_loader/document_loader.py +++ b/applications/ColossalQA/colossalqa/data_loader/document_loader.py @@ -52,7 +52,7 @@ class DocumentLoader: def load_data(self, path: str) -> None: """ Load data. Please refer to https://python.langchain.com/docs/modules/data_connection/document_loaders/ - for sepcific format requirements. + for specific format requirements. Args: path: path to a file To load files with glob path, here are some examples. diff --git a/applications/ColossalQA/colossalqa/local/colossalcloud_llm.py b/applications/ColossalQA/colossalqa/local/colossalcloud_llm.py index 62aead66c..483f65e20 100644 --- a/applications/ColossalQA/colossalqa/local/colossalcloud_llm.py +++ b/applications/ColossalQA/colossalqa/local/colossalcloud_llm.py @@ -100,7 +100,7 @@ class ColossalCloudLLM(LLM): def text_completion(self, prompt, gen_config, auth_config): - # Complusory Parameters + # Required Parameters endpoint = auth_config.pop('endpoint') max_new_tokens = gen_config.pop('max_new_tokens') # Optional Parameters diff --git a/applications/ColossalQA/colossalqa/local/llm.py b/applications/ColossalQA/colossalqa/local/llm.py index 0aa383e9d..4cc82c1a3 100644 --- a/applications/ColossalQA/colossalqa/local/llm.py +++ b/applications/ColossalQA/colossalqa/local/llm.py @@ -33,7 +33,7 @@ class ColossalAPI: def __init__(self, model_type: str, model_path: str, ckpt_path: str = None) -> None: """ - Configurate model + Configure model """ if model_type + model_path + (ckpt_path or "") in ColossalAPI.__instances: return @@ -47,7 +47,7 @@ class ColossalAPI: self.model.load_state_dict(state_dict) self.model.to(torch.cuda.current_device()) - # Configurate tokenizer + # Configure tokenizer self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) self.model.eval() @@ -87,7 +87,7 @@ class ColossalAPI: class VllmAPI: def __init__(self, host: str = "localhost", port: int = 8077) -> None: - # Configurate api for model served through web + # Configure api for model served through web self.host = host self.port = port self.url = f"http://{self.host}:{self.port}/generate" diff --git a/applications/ColossalQA/colossalqa/retrieval_conversation_universal.py b/applications/ColossalQA/colossalqa/retrieval_conversation_universal.py index b23058d6d..6e77bb2ae 100644 --- a/applications/ColossalQA/colossalqa/retrieval_conversation_universal.py +++ b/applications/ColossalQA/colossalqa/retrieval_conversation_universal.py @@ -36,7 +36,7 @@ class UniversalRetrievalConversation: text_splitter_chunk_overlap=10, ) -> None: """ - Warpper for multilingual retrieval qa class (Chinese + English) + Wrapper for multilingual retrieval qa class (Chinese + English) Args: embedding_model_path: local or huggingface embedding model embedding_model_device: diff --git a/applications/ColossalQA/colossalqa/retriever.py b/applications/ColossalQA/colossalqa/retriever.py index c891cb613..870a73ca5 100644 --- a/applications/ColossalQA/colossalqa/retriever.py +++ b/applications/ColossalQA/colossalqa/retriever.py @@ -59,7 +59,7 @@ class CustomRetriever(BaseRetriever): Add documents to retriever Args: docs: the documents to add - cleanup: choose from "incremental" (update embeddings, skip existing embeddings) and "full" (destory and rebuild retriever) + cleanup: choose from "incremental" (update embeddings, skip existing embeddings) and "full" (destroy and rebuild retriever) mode: choose from "by source" (documents are grouped by source) and "merge" (documents are merged into one vector store) """ if cleanup == "full": diff --git a/applications/ColossalQA/colossalqa/utils.py b/applications/ColossalQA/colossalqa/utils.py index cd8c3e5ac..49d99014b 100644 --- a/applications/ColossalQA/colossalqa/utils.py +++ b/applications/ColossalQA/colossalqa/utils.py @@ -49,7 +49,7 @@ def destroy_sql_database(sql_engine: Union[Engine, str]) -> None: def detect_lang_naive(s): """ - Naive function for language detection, should be replaced by an independant layer + Naive function for language detection, should be replaced by an independent layer """ remove_nota = "[’·°–!\"#$%&'()*+,-./:;<=>?@,。?★、…【】()《》?“”‘’![\\]^_`{|}~]+" s = re.sub(remove_nota, "", s) diff --git a/examples/language/openmoe/model/modeling_openmoe.py b/examples/language/openmoe/model/modeling_openmoe.py index eee3b505a..fdd8442f5 100644 --- a/examples/language/openmoe/model/modeling_openmoe.py +++ b/examples/language/openmoe/model/modeling_openmoe.py @@ -96,7 +96,7 @@ def set_openmoe_args( load_balance_beam_width (int, optional): Expert load balance search's beam width. Defaults to 8. load_balance_group_swap_factor (float, optional): Expert load balance group swap factor. Longer value encourages less swap. Defaults to 0.4. enable_kernel (bool, optional): Use kernel optimization. Defaults to False. - enable_comm_overlap (bool, optional): Use communication overlap for MoE. Recommended to enable for muiti-node training. Defaults to False. + enable_comm_overlap (bool, optional): Use communication overlap for MoE. Recommended to enable for multi-node training. Defaults to False. enable_hierarchical_alltoall (bool, optional): Use hierarchical alltoall for MoE. Defaults to False. """ moe_args = dict( diff --git a/examples/language/openmoe/train.py b/examples/language/openmoe/train.py index f3267b7c6..92f4e066a 100644 --- a/examples/language/openmoe/train.py +++ b/examples/language/openmoe/train.py @@ -190,13 +190,13 @@ def parse_args(): parser.add_argument( "--comm_overlap", action="store_true", - help="Use communication overlap for MoE. Recommended to enable for muiti-node training.", + help="Use communication overlap for MoE. Recommended to enable for multi-node training.", ) # hierarchical all-to-all parser.add_argument( "--hierarchical_alltoall", action="store_true", - help="Use hierarchical all-to-all for MoE. Recommended to enable for muiti-node training.", + help="Use hierarchical all-to-all for MoE. Recommended to enable for multi-node training.", ) args = parser.parse_args() @@ -366,7 +366,7 @@ def main(): ): coordinator.print_on_master(f"Apply load balance") apply_load_balance(model, optimizer) - # save ckeckpoint + # save checkpoint if (step + 1) % args.save_interval == 0: coordinator.print_on_master(f"Saving model checkpoint to {args.output_path}") booster.save_model(model, args.output_path, shard=True)