mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] add sequential order to communication actions (#1735)
parent
b893342f95
commit
a4ce180e85
|
@ -4,9 +4,18 @@ import warnings
|
||||||
from functools import reduce
|
from functools import reduce
|
||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (MemoryCost, ShardingStrategy, TrainCycleItem)
|
|
||||||
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||||
|
CommAction,
|
||||||
|
CommType,
|
||||||
|
MemoryCost,
|
||||||
|
ShardingStrategy,
|
||||||
|
TrainCycleItem,
|
||||||
|
)
|
||||||
|
|
||||||
from colossalai.auto_parallel.tensor_shard.utils import \
|
from colossalai.auto_parallel.tensor_shard.utils import \
|
||||||
ignore_sharding_exception
|
ignore_sharding_exception
|
||||||
|
|
||||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
||||||
|
|
||||||
from .strategy_generator import StrategyGenerator
|
from .strategy_generator import StrategyGenerator
|
||||||
|
@ -122,26 +131,28 @@ class ConvStrategyGenerator(StrategyGenerator):
|
||||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||||
|
|
||||||
# set communication action
|
# set communication action
|
||||||
input_comm_spec = self.get_communication_spec(
|
input_comm_action = self.get_communication_action(
|
||||||
sharding_spec=sharding_spec_mapping["input"],
|
sharding_spec=sharding_spec_mapping["input"],
|
||||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||||
logical_process_axis=mesh_dim_1)
|
logical_process_axis=mesh_dim_1,
|
||||||
|
comm_type=CommType.BEFORE)
|
||||||
communication_action_mapping = {"input": input_comm_spec}
|
communication_action_mapping = {"input": input_comm_action}
|
||||||
|
|
||||||
if self.is_param("other"):
|
if self.is_param("other"):
|
||||||
other_comm_spec = self.get_communication_spec(
|
other_comm_action = self.get_communication_action(
|
||||||
sharding_spec_mapping["other"],
|
sharding_spec_mapping["other"],
|
||||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||||
logical_process_axis=mesh_dim_0)
|
logical_process_axis=mesh_dim_0,
|
||||||
communication_action_mapping["other"] = other_comm_spec
|
comm_type=CommType.HOOK)
|
||||||
|
communication_action_mapping["other"] = other_comm_action
|
||||||
|
|
||||||
if self.has_bias and self.is_param("bias"):
|
if self.has_bias and self.is_param("bias"):
|
||||||
bias_comm_spec = self.get_communication_spec(
|
bias_comm_action = self.get_communication_action(
|
||||||
sharding_spec_mapping["bias"],
|
sharding_spec_mapping["bias"],
|
||||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||||
logical_process_axis=mesh_dim_0)
|
logical_process_axis=mesh_dim_0,
|
||||||
communication_action_mapping["bias"] = bias_comm_spec
|
comm_type=CommType.HOOK)
|
||||||
|
communication_action_mapping["bias"] = bias_comm_action
|
||||||
|
|
||||||
return self.get_sharding_strategy(name=name,
|
return self.get_sharding_strategy(name=name,
|
||||||
sharding_spec_mapping=sharding_spec_mapping,
|
sharding_spec_mapping=sharding_spec_mapping,
|
||||||
|
@ -167,18 +178,20 @@ class ConvStrategyGenerator(StrategyGenerator):
|
||||||
|
|
||||||
communication_action_mapping = {}
|
communication_action_mapping = {}
|
||||||
if self.is_param("other"):
|
if self.is_param("other"):
|
||||||
other_comm_spec = self.get_communication_spec(
|
other_comm_action = self.get_communication_action(
|
||||||
sharding_spec_mapping["other"],
|
sharding_spec_mapping["other"],
|
||||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||||
logical_process_axis=mesh_dim_0)
|
logical_process_axis=mesh_dim_0,
|
||||||
communication_action_mapping["other"] = other_comm_spec
|
comm_type=CommType.HOOK)
|
||||||
|
communication_action_mapping["other"] = other_comm_action
|
||||||
|
|
||||||
if self.has_bias and self.is_param("bias"):
|
if self.has_bias and self.is_param("bias"):
|
||||||
bias_comm_spec = self.get_communication_spec(
|
bias_comm_action = self.get_communication_action(
|
||||||
sharding_spec_mapping["bias"],
|
sharding_spec_mapping["bias"],
|
||||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||||
logical_process_axis=mesh_dim_0)
|
logical_process_axis=mesh_dim_0,
|
||||||
communication_action_mapping["bias"] = bias_comm_spec
|
comm_type=CommType.HOOK)
|
||||||
|
communication_action_mapping["bias"] = bias_comm_action
|
||||||
|
|
||||||
return self.get_sharding_strategy(name=name,
|
return self.get_sharding_strategy(name=name,
|
||||||
sharding_spec_mapping=sharding_spec_mapping,
|
sharding_spec_mapping=sharding_spec_mapping,
|
||||||
|
@ -206,26 +219,30 @@ class ConvStrategyGenerator(StrategyGenerator):
|
||||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||||
|
|
||||||
# set communication action
|
# set communication action
|
||||||
output_comm_spec = self.get_communication_spec(
|
output_comm_action = self.get_communication_action(
|
||||||
sharding_spec_mapping["output"],
|
sharding_spec_mapping["output"],
|
||||||
communication_pattern=CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD,
|
communication_pattern=CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD,
|
||||||
logical_process_axis=mesh_dim_1)
|
logical_process_axis=mesh_dim_1,
|
||||||
|
comm_type=CommType.AFTER,
|
||||||
|
arg_index=0)
|
||||||
|
|
||||||
communication_action_mapping = {"output": output_comm_spec}
|
communication_action_mapping = {"output": output_comm_action}
|
||||||
|
|
||||||
if self.is_param("other"):
|
if self.is_param("other"):
|
||||||
other_comm_spec = self.get_communication_spec(
|
other_comm_action = self.get_communication_action(
|
||||||
sharding_spec_mapping["other"],
|
sharding_spec_mapping["other"],
|
||||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||||
logical_process_axis=mesh_dim_0)
|
logical_process_axis=mesh_dim_0,
|
||||||
communication_action_mapping["other"] = other_comm_spec
|
comm_type=CommType.HOOK)
|
||||||
|
communication_action_mapping["other"] = other_comm_action
|
||||||
|
|
||||||
if self.has_bias and self.is_param("bias"):
|
if self.has_bias and self.is_param("bias"):
|
||||||
bias_comm_spec = self.get_communication_spec(
|
bias_comm_action = self.get_communication_action(
|
||||||
sharding_spec_mapping["bias"],
|
sharding_spec_mapping["bias"],
|
||||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||||
logical_process_axis=mesh_dim_0)
|
logical_process_axis=mesh_dim_0,
|
||||||
communication_action_mapping["bias"] = bias_comm_spec
|
comm_type=CommType.HOOK)
|
||||||
|
communication_action_mapping["bias"] = bias_comm_action
|
||||||
|
|
||||||
return self.get_sharding_strategy(name=name,
|
return self.get_sharding_strategy(name=name,
|
||||||
sharding_spec_mapping=sharding_spec_mapping,
|
sharding_spec_mapping=sharding_spec_mapping,
|
||||||
|
@ -256,16 +273,20 @@ class ConvStrategyGenerator(StrategyGenerator):
|
||||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||||
|
|
||||||
# set communication action
|
# set communication action
|
||||||
output_comm_spec = self.get_communication_spec(
|
output_comm_action = self.get_communication_action(
|
||||||
sharding_spec_mapping["output"],
|
sharding_spec_mapping["output"],
|
||||||
communication_pattern=CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD,
|
communication_pattern=CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD,
|
||||||
logical_process_axis=mesh_dim_0)
|
logical_process_axis=mesh_dim_0,
|
||||||
input_comm_spec = self.get_communication_spec(
|
comm_type=CommType.AFTER,
|
||||||
|
arg_index=0)
|
||||||
|
input_comm_action = self.get_communication_action(
|
||||||
sharding_spec_mapping["input"],
|
sharding_spec_mapping["input"],
|
||||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||||
logical_process_axis=mesh_dim_0)
|
logical_process_axis=mesh_dim_0,
|
||||||
|
comm_type=CommType.BEFORE,
|
||||||
|
arg_index=0)
|
||||||
|
|
||||||
communication_action_mapping = {"output": output_comm_spec, "input": input_comm_spec}
|
communication_action_mapping = {"output": output_comm_action, "input": input_comm_action}
|
||||||
|
|
||||||
return self.get_sharding_strategy(name=name,
|
return self.get_sharding_strategy(name=name,
|
||||||
sharding_spec_mapping=sharding_spec_mapping,
|
sharding_spec_mapping=sharding_spec_mapping,
|
||||||
|
@ -291,12 +312,14 @@ class ConvStrategyGenerator(StrategyGenerator):
|
||||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||||
|
|
||||||
# set communication action
|
# set communication action
|
||||||
output_comm_spec = self.get_communication_spec(
|
output_comm_action = self.get_communication_action(
|
||||||
sharding_spec_mapping["output"],
|
sharding_spec_mapping["output"],
|
||||||
communication_pattern=CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD,
|
communication_pattern=CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD,
|
||||||
logical_process_axis=mesh_dim_0)
|
logical_process_axis=mesh_dim_0,
|
||||||
|
comm_type=CommType.AFTER,
|
||||||
|
arg_index=0)
|
||||||
|
|
||||||
communication_action_mapping = {"output": output_comm_spec}
|
communication_action_mapping = {"output": output_comm_action}
|
||||||
|
|
||||||
return self.get_sharding_strategy(name=name,
|
return self.get_sharding_strategy(name=name,
|
||||||
sharding_spec_mapping=sharding_spec_mapping,
|
sharding_spec_mapping=sharding_spec_mapping,
|
||||||
|
@ -324,12 +347,13 @@ class ConvStrategyGenerator(StrategyGenerator):
|
||||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||||
|
|
||||||
# set communication action
|
# set communication action
|
||||||
input_comm_spec = self.get_communication_spec(
|
input_comm_action = self.get_communication_action(
|
||||||
sharding_spec_mapping["input"],
|
sharding_spec_mapping["input"],
|
||||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||||
logical_process_axis=mesh_dim_0)
|
logical_process_axis=mesh_dim_0,
|
||||||
|
comm_type=CommType.BEFORE)
|
||||||
|
|
||||||
communication_action_mapping = {"input": input_comm_spec}
|
communication_action_mapping = {"input": input_comm_action}
|
||||||
|
|
||||||
return self.get_sharding_strategy(name=name,
|
return self.get_sharding_strategy(name=name,
|
||||||
sharding_spec_mapping=sharding_spec_mapping,
|
sharding_spec_mapping=sharding_spec_mapping,
|
||||||
|
@ -375,18 +399,20 @@ class ConvStrategyGenerator(StrategyGenerator):
|
||||||
|
|
||||||
communication_action_mapping = {}
|
communication_action_mapping = {}
|
||||||
if self.is_param("other"):
|
if self.is_param("other"):
|
||||||
other_comm_spec = self.get_communication_spec(
|
other_comm_action = self.get_communication_action(
|
||||||
sharding_spec_mapping["other"],
|
sharding_spec_mapping["other"],
|
||||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||||
logical_process_axis=[mesh_dim_0, mesh_dim_1])
|
logical_process_axis=[mesh_dim_0, mesh_dim_1],
|
||||||
communication_action_mapping["other"] = other_comm_spec
|
comm_type=CommType.HOOK)
|
||||||
|
communication_action_mapping["other"] = other_comm_action
|
||||||
|
|
||||||
if self.has_bias and self.is_param("bias"):
|
if self.has_bias and self.is_param("bias"):
|
||||||
bias_comm_spec = self.get_communication_spec(
|
bias_comm_action = self.get_communication_action(
|
||||||
sharding_spec_mapping["bias"],
|
sharding_spec_mapping["bias"],
|
||||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||||
logical_process_axis=[mesh_dim_0, mesh_dim_1])
|
logical_process_axis=[mesh_dim_0, mesh_dim_1],
|
||||||
communication_action_mapping["bias"] = bias_comm_spec
|
comm_type=CommType.HOOK)
|
||||||
|
communication_action_mapping["bias"] = bias_comm_action
|
||||||
|
|
||||||
return self.get_sharding_strategy(name=name,
|
return self.get_sharding_strategy(name=name,
|
||||||
sharding_spec_mapping=sharding_spec_mapping,
|
sharding_spec_mapping=sharding_spec_mapping,
|
||||||
|
@ -411,12 +437,14 @@ class ConvStrategyGenerator(StrategyGenerator):
|
||||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||||
|
|
||||||
# set communication action
|
# set communication action
|
||||||
output_comm_spec = self.get_communication_spec(
|
output_comm_action = self.get_communication_action(
|
||||||
sharding_spec_mapping["output"],
|
sharding_spec_mapping["output"],
|
||||||
communication_pattern=CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD,
|
communication_pattern=CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD,
|
||||||
logical_process_axis=[mesh_dim_0, mesh_dim_1])
|
logical_process_axis=[mesh_dim_0, mesh_dim_1],
|
||||||
|
comm_type=CommType.AFTER,
|
||||||
|
arg_index=0)
|
||||||
|
|
||||||
communication_action_mapping = {"output": output_comm_spec}
|
communication_action_mapping = {"output": output_comm_action}
|
||||||
|
|
||||||
return self.get_sharding_strategy(name=name,
|
return self.get_sharding_strategy(name=name,
|
||||||
sharding_spec_mapping=sharding_spec_mapping,
|
sharding_spec_mapping=sharding_spec_mapping,
|
||||||
|
@ -443,12 +471,14 @@ class ConvStrategyGenerator(StrategyGenerator):
|
||||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||||
|
|
||||||
# set communication action
|
# set communication action
|
||||||
input_comm_spec = self.get_communication_spec(
|
input_comm_action = self.get_communication_action(
|
||||||
sharding_spec_mapping["input"],
|
sharding_spec_mapping["input"],
|
||||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||||
logical_process_axis=[mesh_dim_0, mesh_dim_1])
|
logical_process_axis=[mesh_dim_0, mesh_dim_1],
|
||||||
|
comm_type=CommType.BEFORE,
|
||||||
|
arg_index=0)
|
||||||
|
|
||||||
communication_action_mapping = {"input": input_comm_spec}
|
communication_action_mapping = {"input": input_comm_action}
|
||||||
|
|
||||||
return self.get_sharding_strategy(name=name,
|
return self.get_sharding_strategy(name=name,
|
||||||
sharding_spec_mapping=sharding_spec_mapping,
|
sharding_spec_mapping=sharding_spec_mapping,
|
||||||
|
|
|
@ -1,8 +1,15 @@
|
||||||
import copy
|
import copy
|
||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (MemoryCost, ShardingStrategy, TrainCycleItem)
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||||
|
CommAction,
|
||||||
|
CommType,
|
||||||
|
MemoryCost,
|
||||||
|
ShardingStrategy,
|
||||||
|
TrainCycleItem,
|
||||||
|
)
|
||||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
||||||
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||||
|
|
||||||
from .strategy_generator import FollowingStrategyGenerator
|
from .strategy_generator import FollowingStrategyGenerator
|
||||||
|
|
||||||
|
@ -81,12 +88,23 @@ class ReshapeGenerator(FollowingStrategyGenerator):
|
||||||
# if there is only one sharding dimension, we should use the value instead of list as logical_process_axis.
|
# if there is only one sharding dimension, we should use the value instead of list as logical_process_axis.
|
||||||
if len(total_mesh_dim_list) == 1:
|
if len(total_mesh_dim_list) == 1:
|
||||||
total_mesh_dim_list = total_mesh_dim_list[0]
|
total_mesh_dim_list = total_mesh_dim_list[0]
|
||||||
|
input_comm_action = self.get_communication_action(
|
||||||
|
sharding_spec=sharding_spec_mapping["input"],
|
||||||
|
communication_pattern=CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
||||||
|
logical_process_axis=total_mesh_dim_list,
|
||||||
|
comm_type=CommType.BEFORE,
|
||||||
|
arg_index=0)
|
||||||
|
input_comm_action.comm_spec.gather_dim = total_mesh_dim_list
|
||||||
|
|
||||||
input_comm_spec = self.get_communication_spec(
|
else:
|
||||||
sharding_spec=sharding_spec_mapping["input"],
|
source_spec = sharding_spec_mapping["input"]
|
||||||
communication_pattern=CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
target_spec = ShardingSpec(device_mesh=self.device_mesh,
|
||||||
logical_process_axis=total_mesh_dim_list)
|
entire_shape=source_spec.entire_shape,
|
||||||
communication_action_mapping["input"] = input_comm_spec
|
dim_partition_dict={})
|
||||||
|
comm_spec = {'src_spec': source_spec, 'tgt_spec': target_spec}
|
||||||
|
input_comm_action = CommAction(comm_spec=comm_spec, comm_type=CommType.BEFORE, arg_index=0)
|
||||||
|
|
||||||
|
communication_action_mapping["input"] = input_comm_action
|
||||||
strategy = self.get_sharding_strategy(name=name,
|
strategy = self.get_sharding_strategy(name=name,
|
||||||
sharding_spec_mapping=sharding_spec_mapping,
|
sharding_spec_mapping=sharding_spec_mapping,
|
||||||
communication_action_mapping=communication_action_mapping)
|
communication_action_mapping=communication_action_mapping)
|
||||||
|
|
|
@ -4,17 +4,27 @@ from functools import reduce
|
||||||
from typing import Any, Dict, List, Union
|
from typing import Any, Dict, List, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (OperationData, OperationDataType, ShardingStrategy,
|
|
||||||
TrainCycleItem)
|
from torch.fx import Node
|
||||||
|
|
||||||
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||||
|
CommAction,
|
||||||
|
CommType,
|
||||||
|
OperationData,
|
||||||
|
OperationDataType,
|
||||||
|
ShardingStrategy,
|
||||||
|
TrainCycleItem,
|
||||||
|
)
|
||||||
|
|
||||||
from colossalai.device.device_mesh import DeviceMesh
|
from colossalai.device.device_mesh import DeviceMesh
|
||||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern, CommSpec
|
from colossalai.tensor.shape_consistency import CollectiveCommPattern, CommSpec, ShapeConsistencyManager
|
||||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||||
from torch.fx import Node
|
from torch.fx import Node
|
||||||
|
|
||||||
|
|
||||||
class StrategyGenerator(ABC):
|
class StrategyGenerator(ABC):
|
||||||
"""
|
"""
|
||||||
StrategyGenerator is used to generate the same group of sharding strategies.
|
StrategyGenerator is used to generate the same group of sharding strategies.
|
||||||
|
|
||||||
TODO: remove the original strategy_generator.py after refactoring
|
TODO: remove the original strategy_generator.py after refactoring
|
||||||
"""
|
"""
|
||||||
|
@ -97,6 +107,21 @@ class StrategyGenerator(ABC):
|
||||||
sharding_spec=sharding_spec,
|
sharding_spec=sharding_spec,
|
||||||
logical_process_axis=logical_process_axis)
|
logical_process_axis=logical_process_axis)
|
||||||
|
|
||||||
|
def get_communication_action(self,
|
||||||
|
sharding_spec: ShardingSpec,
|
||||||
|
communication_pattern: CollectiveCommPattern,
|
||||||
|
logical_process_axis: Union[int, List[int]],
|
||||||
|
comm_type: CommType,
|
||||||
|
arg_index: int = -1) -> CommAction:
|
||||||
|
"""
|
||||||
|
A factory method to produce a CommAction object.
|
||||||
|
"""
|
||||||
|
return CommAction(comm_spec=self.get_communication_spec(sharding_spec=sharding_spec,
|
||||||
|
communication_pattern=communication_pattern,
|
||||||
|
logical_process_axis=logical_process_axis),
|
||||||
|
comm_type=comm_type,
|
||||||
|
arg_index=arg_index)
|
||||||
|
|
||||||
def update_communication_cost(self, strategy: ShardingStrategy) -> ShardingStrategy:
|
def update_communication_cost(self, strategy: ShardingStrategy) -> ShardingStrategy:
|
||||||
"""
|
"""
|
||||||
Compute the communication cost involved in the forward and backward iteration.
|
Compute the communication cost involved in the forward and backward iteration.
|
||||||
|
@ -117,8 +142,21 @@ class StrategyGenerator(ABC):
|
||||||
# check if communication action exists
|
# check if communication action exists
|
||||||
# if so, loop over each action and compute the cost of each action
|
# if so, loop over each action and compute the cost of each action
|
||||||
if strategy.communication_actions is not None:
|
if strategy.communication_actions is not None:
|
||||||
for operand, comm_spec in strategy.communication_actions.items():
|
for operand, comm_action in strategy.communication_actions.items():
|
||||||
_compute_and_add(operand, comm_spec)
|
if isinstance(comm_action, CommAction):
|
||||||
|
comm_spec = comm_action.comm_spec
|
||||||
|
else:
|
||||||
|
# this condition branch will be removed after all the handler updated.
|
||||||
|
comm_spec = comm_action
|
||||||
|
if isinstance(comm_spec, dict):
|
||||||
|
src_spec = comm_spec['src_spec']
|
||||||
|
tgt_spec = comm_spec['tgt_spec']
|
||||||
|
shape_consistency_manager = ShapeConsistencyManager()
|
||||||
|
_, comm_action_sequence, _ = shape_consistency_manager.shape_consistency(src_spec, tgt_spec)
|
||||||
|
for comm_spec_ in comm_action_sequence:
|
||||||
|
_compute_and_add(operand, comm_spec_)
|
||||||
|
else:
|
||||||
|
_compute_and_add(operand, comm_spec)
|
||||||
|
|
||||||
# update the communication cost attribute in-place
|
# update the communication cost attribute in-place
|
||||||
strategy.communication_cost = comm_cost
|
strategy.communication_cost = comm_cost
|
||||||
|
@ -141,7 +179,7 @@ class StrategyGenerator(ABC):
|
||||||
def _compute_size_in_bytes(self, strategy: ShardingStrategy, key: str):
|
def _compute_size_in_bytes(self, strategy: ShardingStrategy, key: str):
|
||||||
"""
|
"""
|
||||||
Compute the size of a tensor in bytes.
|
Compute the size of a tensor in bytes.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
strategy (ShardingStrategy): the ShardingStrategy generated.
|
strategy (ShardingStrategy): the ShardingStrategy generated.
|
||||||
key (str): the name of the operation data defined by the generator.
|
key (str): the name of the operation data defined by the generator.
|
||||||
|
@ -182,7 +220,7 @@ class StrategyGenerator(ABC):
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def validate(self) -> bool:
|
def validate(self) -> bool:
|
||||||
"""
|
"""
|
||||||
Validate if the operands are of desired shape.
|
Validate if the operands are of desired shape.
|
||||||
If True, means this generator can be used for the current operation.
|
If True, means this generator can be used for the current operation.
|
||||||
"""
|
"""
|
||||||
pass
|
pass
|
||||||
|
@ -190,7 +228,7 @@ class StrategyGenerator(ABC):
|
||||||
|
|
||||||
class FollowingStrategyGenerator(StrategyGenerator):
|
class FollowingStrategyGenerator(StrategyGenerator):
|
||||||
"""
|
"""
|
||||||
FollowingStrategyGenerator is used to generate the sharding strategies which depends on its predecessor node.
|
FollowingStrategyGenerator is used to generate the sharding strategies which depends on its predecessor node.
|
||||||
|
|
||||||
TODO: remove the original strategy_generator.py after refactoring
|
TODO: remove the original strategy_generator.py after refactoring
|
||||||
"""
|
"""
|
||||||
|
|
|
@ -4,11 +4,12 @@ from enum import Enum
|
||||||
from typing import Any, Dict, List, Tuple, Union
|
from typing import Any, Dict, List, Tuple, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from colossalai.tensor.shape_consistency import CommSpec
|
|
||||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
|
||||||
from torch.fx.node import Node
|
from torch.fx.node import Node
|
||||||
|
|
||||||
from .constants import (BCAST_FUNC_OP, ELEMENTWISE_FUNC_OP, ELEMENTWISE_MODULE_OP, RESHAPE_FUNC_OP)
|
from colossalai.tensor.shape_consistency import CommSpec
|
||||||
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||||
|
|
||||||
|
from .constants import BCAST_FUNC_OP, ELEMENTWISE_FUNC_OP, ELEMENTWISE_MODULE_OP, RESHAPE_FUNC_OP
|
||||||
|
|
||||||
__all__ = ['OperationDataType', 'OperationData', 'TrainCycleItem', 'MemoryCost', 'ShardingStrategy', 'StrategiesVector']
|
__all__ = ['OperationDataType', 'OperationData', 'TrainCycleItem', 'MemoryCost', 'ShardingStrategy', 'StrategiesVector']
|
||||||
|
|
||||||
|
@ -84,6 +85,38 @@ class MemoryCost:
|
||||||
buffer: int = 0
|
buffer: int = 0
|
||||||
|
|
||||||
|
|
||||||
|
class CommType(Enum):
|
||||||
|
"""
|
||||||
|
CommType describes the sequential order of a communication action and a computation action.
|
||||||
|
|
||||||
|
Meaning:
|
||||||
|
BEFORE: the communication action happens just before the computation operation.
|
||||||
|
AFTER: the communication action happens after the computation operation.
|
||||||
|
HOOK: the communication action is used to do the grad all reduce.
|
||||||
|
IMPLICIT: the communication action happens during the kernel execution, such as SyncBatchNorm
|
||||||
|
"""
|
||||||
|
BEFORE = 0
|
||||||
|
AFTER = 1
|
||||||
|
HOOK = 2
|
||||||
|
IMPLICIT = 3
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class CommAction:
|
||||||
|
"""
|
||||||
|
CommAction is used to record the communication action.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
comm_spec: express the communication pattern and the process groups to execute the communication action.
|
||||||
|
comm_type: describes the sequential order of a communication action and a computation action.
|
||||||
|
arg_index: record the location of tensor which join the communication, we cannot use name of node or op_data at runtime,
|
||||||
|
because the args of node may be changed by graph transform passes.
|
||||||
|
"""
|
||||||
|
comm_spec: CommSpec = None
|
||||||
|
comm_type: CommType = None
|
||||||
|
arg_index: int = -1
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class ShardingStrategy:
|
class ShardingStrategy:
|
||||||
"""
|
"""
|
||||||
|
@ -102,7 +135,7 @@ class ShardingStrategy:
|
||||||
compute_cost: TrainCycleItem = None
|
compute_cost: TrainCycleItem = None
|
||||||
communication_cost: TrainCycleItem = None
|
communication_cost: TrainCycleItem = None
|
||||||
memory_cost: TrainCycleItem = None
|
memory_cost: TrainCycleItem = None
|
||||||
communication_actions: Dict[OperationData, CommSpec] = None
|
communication_actions: Dict[OperationData, CommAction] = None
|
||||||
resharding_costs: Dict[Node, List[TrainCycleItem]] = None
|
resharding_costs: Dict[Node, List[TrainCycleItem]] = None
|
||||||
|
|
||||||
@property
|
@property
|
||||||
|
|
|
@ -8,8 +8,10 @@ import torch
|
||||||
from torch.fx import symbolic_trace
|
from torch.fx import symbolic_trace
|
||||||
from torch.fx.node import Node
|
from torch.fx.node import Node
|
||||||
|
|
||||||
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import CommAction, CommType, OperationDataType
|
||||||
from colossalai.device.device_mesh import DeviceMesh
|
from colossalai.device.device_mesh import DeviceMesh
|
||||||
from colossalai.fx.passes.split_module import split_module
|
from colossalai.fx.passes.split_module import split_module
|
||||||
|
from colossalai.tensor.comm_spec import CommSpec, _all_reduce
|
||||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||||||
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
||||||
|
|
||||||
|
@ -19,9 +21,9 @@ shape_consistency_manager = ShapeConsistencyManager()
|
||||||
class ConsistencyApply(torch.autograd.Function):
|
class ConsistencyApply(torch.autograd.Function):
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def forward(ctx, node, origin_dict, input_dict, node_index, user_node_index):
|
def forward(ctx, node, origin_sharding_spec, target_sharding_spec):
|
||||||
ctx.origin_sharding_spec = origin_dict[node_index]
|
ctx.origin_sharding_spec = origin_sharding_spec
|
||||||
ctx.target_sharding_spec = input_dict[node_index][user_node_index]
|
ctx.target_sharding_spec = target_sharding_spec
|
||||||
return shape_consistency_manager.apply_for_autoparallel_runtime(node, ctx.origin_sharding_spec,
|
return shape_consistency_manager.apply_for_autoparallel_runtime(node, ctx.origin_sharding_spec,
|
||||||
ctx.target_sharding_spec)
|
ctx.target_sharding_spec)
|
||||||
|
|
||||||
|
@ -32,7 +34,9 @@ class ConsistencyApply(torch.autograd.Function):
|
||||||
|
|
||||||
|
|
||||||
def runtime_apply_for_leaf_node(node, origin_dict, input_dict, node_index, user_node_index):
|
def runtime_apply_for_leaf_node(node, origin_dict, input_dict, node_index, user_node_index):
|
||||||
return ConsistencyApply.apply(node, origin_dict, input_dict, node_index, user_node_index)
|
origin_sharding_spec = origin_dict[node_index]
|
||||||
|
target_sharding_spec = input_dict[node_index][user_node_index]
|
||||||
|
return ConsistencyApply.apply(node, origin_sharding_spec, target_sharding_spec)
|
||||||
|
|
||||||
|
|
||||||
def runtime_apply(node, origin_dict, input_dict, node_index, user_node_index):
|
def runtime_apply(node, origin_dict, input_dict, node_index, user_node_index):
|
||||||
|
@ -41,6 +45,18 @@ def runtime_apply(node, origin_dict, input_dict, node_index, user_node_index):
|
||||||
return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec)
|
return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec)
|
||||||
|
|
||||||
|
|
||||||
|
def runtime_comm_spec_apply(tensor, comm_actions_dict, node_index, op_data):
|
||||||
|
|
||||||
|
comm_action = comm_actions_dict[node_index][op_data]
|
||||||
|
if isinstance(comm_action.comm_spec, CommSpec):
|
||||||
|
rst = comm_action.comm_spec.covert_spec_to_action(tensor)
|
||||||
|
else:
|
||||||
|
origin_sharding_spec = comm_action.comm_spec['src_spec']
|
||||||
|
tgt_sharding_spec = comm_action.comm_spec['tgt_spec']
|
||||||
|
rst = ConsistencyApply.apply(tensor, origin_sharding_spec, tgt_sharding_spec)
|
||||||
|
return rst
|
||||||
|
|
||||||
|
|
||||||
def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh):
|
def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh):
|
||||||
mod_graph = gm.graph
|
mod_graph = gm.graph
|
||||||
nodes = tuple(mod_graph.nodes)
|
nodes = tuple(mod_graph.nodes)
|
||||||
|
@ -63,6 +79,16 @@ def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], de
|
||||||
setattr(param, 'sharding_spec', origin_sharding_spec)
|
setattr(param, 'sharding_spec', origin_sharding_spec)
|
||||||
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
|
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
|
||||||
shape_consistency_manager.apply(param, target_sharding_spec)
|
shape_consistency_manager.apply(param, target_sharding_spec)
|
||||||
|
comm_actions = node.best_strategy.communication_actions
|
||||||
|
|
||||||
|
for operation_data, comm_action in comm_actions.items():
|
||||||
|
comm_spec_to_use = comm_action.comm_spec
|
||||||
|
if operation_data.type == OperationDataType.PARAM and operation_data.name == name and comm_action.comm_type == CommType.HOOK:
|
||||||
|
|
||||||
|
def hook_fn(grad):
|
||||||
|
_all_reduce(grad, comm_spec_to_use)
|
||||||
|
|
||||||
|
param.register_hook(hook_fn)
|
||||||
|
|
||||||
for name, buffer in target_module.named_buffers():
|
for name, buffer in target_module.named_buffers():
|
||||||
origin_sharding_spec = ShardingSpec(device_mesh, buffer.shape, {})
|
origin_sharding_spec = ShardingSpec(device_mesh, buffer.shape, {})
|
||||||
|
@ -79,15 +105,24 @@ def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], de
|
||||||
target_sharding_specs.append(target_sharding_spec)
|
target_sharding_specs.append(target_sharding_spec)
|
||||||
sharding_spec_convert_dict[index] = target_sharding_specs
|
sharding_spec_convert_dict[index] = target_sharding_specs
|
||||||
|
|
||||||
|
# the dict to record comm actions of nodes
|
||||||
|
comm_actions_dict = {}
|
||||||
|
for index, node in enumerate(nodes):
|
||||||
|
comm_action_dict = {}
|
||||||
|
for op_data, comm_action in node.best_strategy.communication_actions.items():
|
||||||
|
comm_action_dict[op_data.name] = comm_action
|
||||||
|
comm_actions_dict[index] = comm_action_dict
|
||||||
|
|
||||||
# add above dicts into graph
|
# add above dicts into graph
|
||||||
for node in nodes:
|
for node in nodes:
|
||||||
if node.op != 'placeholder':
|
if node.op != 'placeholder':
|
||||||
with mod_graph.inserting_before(node):
|
with mod_graph.inserting_before(node):
|
||||||
input_specs_node = mod_graph.create_node('placeholder', target='sharding_spec_convert_dict')
|
input_specs_node = mod_graph.create_node('placeholder', target='sharding_spec_convert_dict')
|
||||||
origin_specs_node = mod_graph.create_node('placeholder', target='origin_node_sharding_spec_dict')
|
origin_specs_node = mod_graph.create_node('placeholder', target='origin_node_sharding_spec_dict')
|
||||||
|
comm_actions_dict_node = mod_graph.create_node('placeholder', target='comm_actions_dict')
|
||||||
break
|
break
|
||||||
|
|
||||||
return sharding_spec_convert_dict, origin_node_sharding_spec_dict
|
return sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict
|
||||||
|
|
||||||
|
|
||||||
def shape_consistency_pass(gm: torch.fx.GraphModule):
|
def shape_consistency_pass(gm: torch.fx.GraphModule):
|
||||||
|
@ -106,6 +141,9 @@ def shape_consistency_pass(gm: torch.fx.GraphModule):
|
||||||
if node.target == 'origin_node_sharding_spec_dict':
|
if node.target == 'origin_node_sharding_spec_dict':
|
||||||
origin_dict_node = node
|
origin_dict_node = node
|
||||||
continue
|
continue
|
||||||
|
if node.target == 'comm_actions_dict':
|
||||||
|
comm_actions_dict_node = node
|
||||||
|
continue
|
||||||
if not hasattr(node, 'best_strategy'):
|
if not hasattr(node, 'best_strategy'):
|
||||||
continue
|
continue
|
||||||
node_to_index_dict[node] = index
|
node_to_index_dict[node] = index
|
||||||
|
@ -138,4 +176,24 @@ def shape_consistency_pass(gm: torch.fx.GraphModule):
|
||||||
new_args[origin_index_args] = shape_consistency_node
|
new_args[origin_index_args] = shape_consistency_node
|
||||||
user_node.args = new_args
|
user_node.args = new_args
|
||||||
|
|
||||||
|
comm_actions = node.best_strategy.communication_actions
|
||||||
|
for op_data, comm_action in comm_actions.items():
|
||||||
|
comm_object = node.args[comm_action.arg_index]
|
||||||
|
if op_data.type == OperationDataType.ARG:
|
||||||
|
if comm_action.comm_type == CommType.BEFORE:
|
||||||
|
with mod_graph.inserting_before(node):
|
||||||
|
comm_spec_apply_node = mod_graph.create_node('call_function',
|
||||||
|
runtime_comm_spec_apply,
|
||||||
|
args=(comm_object, comm_actions_dict_node,
|
||||||
|
node_to_index_dict[node], op_data.name))
|
||||||
|
elif comm_action.comm_type == CommType.AFTER:
|
||||||
|
with mod_graph.inserting_after(node):
|
||||||
|
comm_spec_apply_node = mod_graph.create_node('call_function',
|
||||||
|
runtime_comm_spec_apply,
|
||||||
|
args=(comm_object, comm_actions_dict_node,
|
||||||
|
node_to_index_dict[node], op_data.name))
|
||||||
|
# TODO: consider other OperationDataType, such as OperationDataType.OUTPUT
|
||||||
|
new_args = list(node.args)
|
||||||
|
new_args[comm_action.arg_index] = comm_spec_apply_node
|
||||||
|
node.args = new_args
|
||||||
return gm
|
return gm
|
||||||
|
|
|
@ -1,8 +1,9 @@
|
||||||
import torch
|
|
||||||
from enum import Enum
|
|
||||||
import torch.distributed as dist
|
|
||||||
from functools import reduce
|
|
||||||
import operator
|
import operator
|
||||||
|
from enum import Enum
|
||||||
|
from functools import reduce
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
from torch.distributed import ReduceOp
|
from torch.distributed import ReduceOp
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
|
@ -238,7 +239,7 @@ class CommSpec:
|
||||||
1. Compute the communication cost which will be used in auto parallel solver.
|
1. Compute the communication cost which will be used in auto parallel solver.
|
||||||
2. Convert the communication spec to real action which will be used in runtime.
|
2. Convert the communication spec to real action which will be used in runtime.
|
||||||
It contains comm_pattern to determine the
|
It contains comm_pattern to determine the
|
||||||
communication method, sharding_spec to determine the communication size, gather_dim and shard_dim
|
communication method, sharding_spec to determine the communication size, gather_dim and shard_dim
|
||||||
to determine the buffer shape, and logical_process_axis
|
to determine the buffer shape, and logical_process_axis
|
||||||
|
|
||||||
Argument:
|
Argument:
|
||||||
|
@ -296,7 +297,7 @@ class CommSpec:
|
||||||
'''
|
'''
|
||||||
For all_gather, all2all, and all_reduce operation, the formula provided in DeviceMesh with alpha-beta model is used to
|
For all_gather, all2all, and all_reduce operation, the formula provided in DeviceMesh with alpha-beta model is used to
|
||||||
compute the communication cost.
|
compute the communication cost.
|
||||||
For shard operation, it is an on-chip operation, so the communication cost is zero.
|
For shard operation, it is an on-chip operation, so the communication cost is zero.
|
||||||
'''
|
'''
|
||||||
comm_size = reduce(operator.mul, self.sharding_spec.get_sharded_shape_per_device(), 1)
|
comm_size = reduce(operator.mul, self.sharding_spec.get_sharded_shape_per_device(), 1)
|
||||||
cost_dict = {}
|
cost_dict = {}
|
||||||
|
@ -347,6 +348,7 @@ class CommSpec:
|
||||||
tensor.data = pattern_to_func_dict[self.comm_pattern](tensor, self)
|
tensor.data = pattern_to_func_dict[self.comm_pattern](tensor, self)
|
||||||
else:
|
else:
|
||||||
tensor.data = tensor
|
tensor.data = tensor
|
||||||
|
return tensor
|
||||||
|
|
||||||
|
|
||||||
pattern_to_func_dict = {
|
pattern_to_func_dict = {
|
||||||
|
|
|
@ -1,3 +1,4 @@
|
||||||
|
import copy
|
||||||
from functools import partial
|
from functools import partial
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
@ -6,15 +7,22 @@ import torch.multiprocessing as mp
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from torch.fx import GraphModule
|
from torch.fx import GraphModule
|
||||||
|
|
||||||
from colossalai.auto_parallel.tensor_shard.solver import (CostGraph, GraphAnalyser, Solver, SolverOptions,
|
from colossalai.auto_parallel.tensor_shard.solver import (
|
||||||
StrategiesConstructor)
|
CostGraph,
|
||||||
|
GraphAnalyser,
|
||||||
|
Solver,
|
||||||
|
SolverOptions,
|
||||||
|
StrategiesConstructor,
|
||||||
|
)
|
||||||
from colossalai.device.device_mesh import DeviceMesh
|
from colossalai.device.device_mesh import DeviceMesh
|
||||||
from colossalai.fx.passes.experimental.adding_shape_consistency_pass_v2 import (shape_consistency_pass,
|
from colossalai.fx.passes.experimental.adding_shape_consistency_pass_v2 import (
|
||||||
solution_annotatation_pass)
|
shape_consistency_pass,
|
||||||
|
solution_annotatation_pass,
|
||||||
|
)
|
||||||
from colossalai.fx.tracer.tracer import ColoTracer
|
from colossalai.fx.tracer.tracer import ColoTracer
|
||||||
from colossalai.initialize import launch
|
from colossalai.initialize import launch
|
||||||
from colossalai.logging import disable_existing_loggers
|
from colossalai.logging import disable_existing_loggers
|
||||||
from colossalai.testing import rerun_if_address_is_in_use
|
from colossalai.testing import assert_close, rerun_if_address_is_in_use
|
||||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||||
from colossalai.utils import free_port
|
from colossalai.utils import free_port
|
||||||
|
|
||||||
|
@ -27,6 +35,7 @@ class ConvModel(nn.Module):
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
x = self.conv(x)
|
x = self.conv(x)
|
||||||
|
x = torch.flatten(x)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
@ -38,12 +47,13 @@ def check_apply(rank, world_size, port):
|
||||||
mesh_shape = (2, 2)
|
mesh_shape = (2, 2)
|
||||||
# [[0, 1]
|
# [[0, 1]
|
||||||
# [2, 3]]
|
# [2, 3]]
|
||||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=False)
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||||
entire_shape = torch.Size((4, 4, 8, 8))
|
|
||||||
|
|
||||||
tracer = ColoTracer()
|
tracer = ColoTracer()
|
||||||
model = ConvModel(4, 4).cuda()
|
model = ConvModel(4, 4).cuda()
|
||||||
origin_output = model(input)
|
test_model = copy.deepcopy(model)
|
||||||
|
test_input = copy.deepcopy(input)
|
||||||
|
|
||||||
input_sample = {'x': torch.rand(4, 4, 4, 4).to('meta')}
|
input_sample = {'x': torch.rand(4, 4, 4, 4).to('meta')}
|
||||||
# graph():
|
# graph():
|
||||||
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
||||||
|
@ -62,16 +72,30 @@ def check_apply(rank, world_size, port):
|
||||||
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser)
|
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser)
|
||||||
ret = solver.call_solver_serialized_args()
|
ret = solver.call_solver_serialized_args()
|
||||||
solution = list(ret[0])
|
solution = list(ret[0])
|
||||||
device_mesh.process_groups_dict = device_mesh.create_process_groups_for_logical_mesh()
|
sharding_spec_dict, origin_spec_dict, comm_actions_dict = solution_annotatation_pass(gm, solution, device_mesh)
|
||||||
sharding_spec_dict, origin_spec_dict = solution_annotatation_pass(gm, solution, device_mesh)
|
|
||||||
shape_consistency_pass(gm)
|
shape_consistency_pass(gm)
|
||||||
gm.recompile()
|
gm.recompile()
|
||||||
nodes = [node for node in gm.graph.nodes]
|
nodes = [node for node in gm.graph.nodes]
|
||||||
# TODO: wrap the gm to avoid the influence of the user training code
|
# TODO: wrap the gm to avoid the influence of the user training code
|
||||||
output = gm(input, sharding_spec_dict, origin_spec_dict)
|
output = gm(input, sharding_spec_dict, origin_spec_dict, comm_actions_dict)
|
||||||
|
origin_output = test_model(test_input)
|
||||||
assert output.equal(origin_output)
|
assert output.equal(origin_output)
|
||||||
|
origin_loss = origin_output.sum()
|
||||||
|
loss = output.sum()
|
||||||
|
|
||||||
|
origin_loss.backward()
|
||||||
|
loss.backward()
|
||||||
|
|
||||||
|
grad_0 = test_model.conv.weight.grad.narrow(0, 0, 2)
|
||||||
|
grad_1 = test_model.conv.weight.grad.narrow(0, 2, 2)
|
||||||
|
|
||||||
|
if rank in (0, 1):
|
||||||
|
assert_close(gm.conv.weight.grad.data, grad_0.data)
|
||||||
|
elif rank in (2, 3):
|
||||||
|
assert_close(gm.conv.weight.grad.data, grad_1.data)
|
||||||
|
|
||||||
|
|
||||||
|
# skip this test due to pulp not installed in CI environment
|
||||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@rerun_if_address_is_in_use()
|
@rerun_if_address_is_in_use()
|
||||||
|
|
Loading…
Reference in New Issue