[feat] support use_zbv in llama, mixtral modeling; only replace Linear1D_Col/Row policy;

pull/6083/head
duanjunwen 1 month ago
parent cfade4c36d
commit a11b4b50a7

@ -1217,6 +1217,7 @@ class HybridParallelPlugin(PipelinePluginBase):
gradient_checkpoint_config=gradient_checkpoint_config,
fp8_communication=fp8_communication,
inner_ring_size=inner_ring_size,
use_zbv=(pp_style == "zbv"),
)
self.amp_config = dict(
initial_scale=initial_scale,

@ -373,6 +373,7 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
make_vocab_size_divisible_by=make_vocab_size_divisible_by,
gradient_checkpoint_config=gradient_checkpoint_config,
fp8_communication=fp8_communication,
use_zbv=(pp_style == "zbv"),
)
self.amp_config = dict(
initial_scale=initial_scale,

@ -34,73 +34,3 @@ class WeightGradStore:
weight.grad = grad_weight
else:
raise Exception("Pop empty queue.")
# @classmethod
# def clear(cls, model, chunk=0):
# weight_grad_tasks = []
# while cls.weight_grad_queue[chunk].qsize() > 0:
# stored_grads = cls.weight_grad_queue[chunk].get()
# if len(weight_grad_tasks) == 0:
# for _ in stored_grads:
# weight_grad_tasks.append([])
# else:
# assert len(weight_grad_tasks) == len(stored_grads)
# for i, task in enumerate(stored_grads):
# weight_grad_tasks[i].append(task)
# weight_params = []
# handles = []
# if get_args().overlap_grad_reduce:
# handles += model.async_reduce_grad()
# output_layer_weight = None
# if parallel_state.is_pipeline_last_stage():
# assert len(weight_grad_tasks) > 0
# output_layer_grads = weight_grad_tasks[0]
# for j in range(len(output_layer_grads)):
# total_input, grad_output, weight, func = output_layer_grads[j]
# if output_layer_weight is None:
# output_layer_weight = weight
# assert output_layer_weight is weight
# func(total_input, grad_output, weight.main_grad)
# output_layer_grads[j] = None # release memory
# weight_grad_tasks = weight_grad_tasks[1:]
# if get_args().overlap_grad_reduce:
# handles += model.async_reduce_grad(output_layer_weight)
# if parallel_state.is_pipeline_first_stage() or parallel_state.is_pipeline_last_stage():
# model_module = get_attr_wrapped_model(model, 'pre_process', return_model_obj=True)
# if model_module.share_embeddings_and_output_weights:
# # if share_embeddings_and_output_weights, wait all-reduce for embeddings
# for handle in handles:
# if handle is not None:
# handle.wait()
# handles = []
# config = get_model_config(model)
# # Do async all-reduce for embedding grads firstly, so that the rank 0 won't
# # be blocked
# embedding_handles = _allreduce_embedding_grads([model], config, async_op=True)
# handles += embedding_handles
# for i in range(len(weight_grad_tasks)):
# tasks = weight_grad_tasks[i]
# param = None
# for j in range(len(tasks)):
# total_input, grad_output, weight, func = tasks[j]
# if param is None:
# param = weight
# assert param is weight
# assert not (weight is output_layer_weight)
# func(total_input, grad_output, weight.main_grad)
# tasks[j] = None # release memory
# weight_params.append(param)
# if get_args().overlap_grad_reduce:
# # All-reduce param grad here
# handles += model.async_reduce_grad(param)
# weight_grad_tasks[i] = None # release memory
# # timers('wait_all_reduce', log_level=1).start(barrier=False)
# for handle in embedding_handles:
# if handle is not None:
# handle.wait()
# # timers('wait_all_reduce').stop()

@ -126,37 +126,65 @@ class LlamaPolicy(Policy):
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=self.shard_config.use_zbv,
),
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=self.shard_config.use_zbv,
),
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=self.shard_config.use_zbv,
),
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=Linear1D_Row,
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=self.shard_config.use_zbv,
),
),
SubModuleReplacementDescription(
suffix="mlp.gate_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=self.shard_config.use_zbv,
),
),
SubModuleReplacementDescription(
suffix="mlp.up_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=self.shard_config.use_zbv,
),
),
SubModuleReplacementDescription(
suffix="mlp.down_proj",
target_module=Linear1D_Row,
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=self.shard_config.use_zbv,
),
),
],
)

@ -124,27 +124,43 @@ class MixtralPolicy(Policy):
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=Linear1D_Col,
kwargs={"fp8_communication": self.shard_config.fp8_communication},
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": self.shard_config.use_zbv,
},
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=Linear1D_Col,
kwargs={"fp8_communication": self.shard_config.fp8_communication},
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": self.shard_config.use_zbv,
},
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=Linear1D_Col,
kwargs={"fp8_communication": self.shard_config.fp8_communication},
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": self.shard_config.use_zbv,
},
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=Linear1D_Row,
kwargs={"fp8_communication": self.shard_config.fp8_communication},
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": self.shard_config.use_zbv,
},
),
SubModuleReplacementDescription(
suffix="block_sparse_moe.gate",
target_module=Linear1D_Col,
kwargs={"gather_output": True, "fp8_communication": self.shard_config.fp8_communication},
kwargs={
"gather_output": True,
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": self.shard_config.use_zbv,
},
),
],
)
@ -322,9 +338,13 @@ class MixtralForCausalLMPolicy(MixtralPolicy):
SubModuleReplacementDescription(
suffix="lm_head",
target_module=Linear1D_Col,
kwargs=dict(gather_output=True, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
gather_output=True,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=self.shard_config.use_zbv,
),
)
]
],
)
}
policy.update(new_item)
@ -380,7 +400,11 @@ class MixtralForSequenceClassificationPolicy(MixtralPolicy):
SubModuleReplacementDescription(
suffix="score",
target_module=Linear1D_Col,
kwargs=dict(gather_output=True, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
gather_output=True,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=self.shard_config.use_zbv,
),
)
]
)

@ -49,6 +49,7 @@ class ShardConfig:
make_vocab_size_divisible_by: int = 64
gradient_checkpoint_config: Optional[GradientCheckpointConfig] = None
extra_kwargs: Dict[str, Any] = field(default_factory=dict)
use_zbv: bool = False
# For ring attention
inner_ring_size: Optional[int] = None

Loading…
Cancel
Save