mirror of https://github.com/hpcaitech/ColossalAI
[Inference] Adapt to Fused rotary (#5348)
* revise rotary embedding * remove useless print * adapt * fix * add * fix * modeling * fix * fix * fixpull/5373/head
parent
35382a7fbf
commit
9f4ab2eb92
|
@ -282,11 +282,10 @@ class NopadLlamaAttention(LlamaAttention):
|
|||
torch.bmm(hidden_states, self.qkv_weight).view(3, token_nums, self.num_heads, self.head_dim).unbind(0)
|
||||
)
|
||||
|
||||
rotary_embedding(query_states, key_states, cos_sin[0], cos_sin[1])
|
||||
|
||||
block_size = k_cache.size(-2)
|
||||
|
||||
if is_prompts:
|
||||
rotary_embedding(query_states, key_states, cos_sin[0], cos_sin[1])
|
||||
attn_output = context_attention_unpadded(
|
||||
q=query_states,
|
||||
k=key_states,
|
||||
|
@ -301,7 +300,7 @@ class NopadLlamaAttention(LlamaAttention):
|
|||
sm_scale=sm_scale,
|
||||
)
|
||||
else:
|
||||
copy_kv_to_blocked_cache(key_states, k_cache, kv_lengths=sequence_lengths, block_tables=block_tables)
|
||||
rotary_embedding(query_states, key_states, cos_sin[0], cos_sin[1], k_cache, block_tables, sequence_lengths)
|
||||
copy_kv_to_blocked_cache(value_states, v_cache, kv_lengths=sequence_lengths, block_tables=block_tables)
|
||||
attn_output = flash_decoding_attention(
|
||||
q=query_states,
|
||||
|
|
|
@ -75,7 +75,6 @@ def copy_kv_to_blocked_cache(
|
|||
block_size = k_cache.size(-2)
|
||||
|
||||
num_warps = 8 if head_dim > 128 else 4
|
||||
|
||||
grid = (bsz, num_kv_heads)
|
||||
_copy_to_kvcache_seqlen1_kernel[grid](
|
||||
k,
|
||||
|
|
|
@ -222,11 +222,11 @@ def fused_rotary_embedding_kernel(
|
|||
out_k0 = loaded_k0 * loaded_cos[:, None, :] - loaded_k1 * loaded_sin[:, None, :]
|
||||
out_k1 = loaded_k0 * loaded_sin[:, None, :] + loaded_k1 * loaded_cos[:, None, :] # total_tokens, head_num, head_dim
|
||||
|
||||
past_kv_seq_len = tl.load(context_lengths + tokens_range) - 1
|
||||
past_kv_seq_len = tl.load(context_lengths + tokens_range, mask=(tokens_range < q_total_tokens)) - 1
|
||||
|
||||
last_block_idx = past_kv_seq_len // block_size
|
||||
block_table_ptr = BLOCK_TABLES + tokens_range * bts_stride
|
||||
block_ids = tl.load(block_table_ptr + last_block_idx * btb_stride)
|
||||
block_ids = tl.load(block_table_ptr + last_block_idx * btb_stride, mask=(tokens_range < q_total_tokens))
|
||||
offsets_in_last_block = (past_kv_seq_len % block_size) * cachebs_stride
|
||||
|
||||
kv_range0 = (
|
||||
|
@ -274,6 +274,122 @@ def fused_rotary_embedding_kernel(
|
|||
)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def fused_rotary_embedding_kernel_v2(
|
||||
q,
|
||||
k,
|
||||
cos,
|
||||
sin,
|
||||
kv_cache,
|
||||
BLOCK_TABLES,
|
||||
context_lengths,
|
||||
q_token_stride,
|
||||
q_head_stride,
|
||||
k_token_stride,
|
||||
k_head_stride,
|
||||
head_dim_stride,
|
||||
cos_token_stride,
|
||||
cos_stride,
|
||||
cacheb_stride,
|
||||
cacheh_stride,
|
||||
cachebs_stride,
|
||||
cached_stride,
|
||||
bts_stride,
|
||||
btb_stride,
|
||||
block_size,
|
||||
q_total_tokens,
|
||||
Q_HEAD_NUM: tl.constexpr,
|
||||
K_HEAD_NUM: tl.constexpr,
|
||||
HEAD_DIM: tl.constexpr,
|
||||
):
|
||||
block_head_index = tl.program_id(0)
|
||||
if block_head_index >= Q_HEAD_NUM:
|
||||
return
|
||||
block_token_index = tl.program_id(1)
|
||||
|
||||
dim_range0 = tl.arange(0, HEAD_DIM // 2)
|
||||
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
|
||||
|
||||
off_q0 = block_token_index * q_token_stride + block_head_index * q_head_stride + dim_range0 * head_dim_stride
|
||||
off_q1 = block_token_index * q_token_stride + block_head_index * q_head_stride + dim_range1 * head_dim_stride
|
||||
off_k0 = block_token_index * k_token_stride + block_head_index * k_head_stride + dim_range0 * head_dim_stride
|
||||
off_k1 = block_token_index * k_token_stride + block_head_index * k_head_stride + dim_range1 * head_dim_stride
|
||||
|
||||
loaded_q0 = tl.load(
|
||||
q + off_q0,
|
||||
)
|
||||
loaded_q1 = tl.load(
|
||||
q + off_q1,
|
||||
)
|
||||
|
||||
loaded_k0 = tl.load(
|
||||
k + off_k0,
|
||||
)
|
||||
|
||||
loaded_k1 = tl.load(
|
||||
k + off_k1,
|
||||
)
|
||||
|
||||
off_cos_sin = block_token_index * cos_token_stride + dim_range0 * cos_stride
|
||||
|
||||
loaded_cos = tl.load(cos + off_cos_sin, mask=(block_token_index < q_total_tokens), other=0.0)
|
||||
loaded_sin = tl.load(sin + off_cos_sin, mask=(block_token_index < q_total_tokens), other=0.0)
|
||||
|
||||
out_q0 = loaded_q0 * loaded_cos - loaded_q1 * loaded_sin
|
||||
out_q1 = loaded_q0 * loaded_sin + loaded_q1 * loaded_cos
|
||||
|
||||
out_k0 = loaded_k0 * loaded_cos - loaded_k1 * loaded_sin
|
||||
out_k1 = loaded_k0 * loaded_sin + loaded_k1 * loaded_cos # total_tokens, head_num, head_dim
|
||||
|
||||
past_kv_seq_len = tl.load(context_lengths + block_token_index) - 1
|
||||
|
||||
last_block_idx = past_kv_seq_len // block_size
|
||||
block_table_ptr = BLOCK_TABLES + block_token_index * bts_stride
|
||||
block_ids = tl.load(block_table_ptr + last_block_idx * btb_stride, mask=(block_token_index < q_total_tokens))
|
||||
offsets_in_last_block = (past_kv_seq_len % block_size) * cachebs_stride
|
||||
|
||||
kv_range0 = (
|
||||
block_ids * cacheb_stride
|
||||
+ block_head_index * cacheh_stride
|
||||
+ offsets_in_last_block
|
||||
+ dim_range0 * cached_stride
|
||||
)
|
||||
kv_range1 = (
|
||||
block_ids * cacheb_stride
|
||||
+ block_head_index * cacheh_stride
|
||||
+ offsets_in_last_block
|
||||
+ dim_range1 * cached_stride
|
||||
)
|
||||
|
||||
tl.store(
|
||||
kv_cache + kv_range0,
|
||||
out_k0,
|
||||
)
|
||||
tl.store(
|
||||
kv_cache + kv_range1,
|
||||
out_k1,
|
||||
)
|
||||
|
||||
# concat
|
||||
tl.store(
|
||||
q + off_q0,
|
||||
out_q0,
|
||||
)
|
||||
tl.store(
|
||||
q + off_q1,
|
||||
out_q1,
|
||||
)
|
||||
tl.store(
|
||||
k + off_k0,
|
||||
out_k0,
|
||||
)
|
||||
tl.store(
|
||||
k + off_k1,
|
||||
out_k1,
|
||||
)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def rotary_embedding(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
|
@ -297,12 +413,13 @@ def rotary_embedding(
|
|||
assert q.size(0) == k.size(0)
|
||||
BLOCK_HEAD = 4
|
||||
BLOCK_TOKENS = 4
|
||||
grid = lambda META: (triton.cdiv(q_head_num, META["BLOCK_HEAD"]), triton.cdiv(q_total_tokens, META["BLOCK_TOKENS"]))
|
||||
|
||||
if head_dim >= 256:
|
||||
if head_dim >= 1024:
|
||||
num_warps = 32
|
||||
elif head_dim >= 128:
|
||||
elif head_dim >= 512:
|
||||
num_warps = 16
|
||||
elif head_dim >= 256:
|
||||
num_warps = 8
|
||||
else:
|
||||
num_warps = 4
|
||||
|
||||
|
@ -318,6 +435,10 @@ def rotary_embedding(
|
|||
cos_token_stride = cos.stride(0)
|
||||
cos_stride = cos.stride(1)
|
||||
if k_cache == None:
|
||||
grid = lambda META: (
|
||||
triton.cdiv(q_head_num, META["BLOCK_HEAD"]),
|
||||
triton.cdiv(q_total_tokens, META["BLOCK_TOKENS"]),
|
||||
)
|
||||
rotary_embedding_kernel[grid](
|
||||
q,
|
||||
k,
|
||||
|
@ -339,7 +460,8 @@ def rotary_embedding(
|
|||
num_warps=num_warps,
|
||||
)
|
||||
else:
|
||||
fused_rotary_embedding_kernel[grid](
|
||||
grid = (triton.next_power_of_2(q_head_num), q_total_tokens)
|
||||
fused_rotary_embedding_kernel_v2[grid](
|
||||
q,
|
||||
k,
|
||||
cos,
|
||||
|
@ -365,8 +487,6 @@ def rotary_embedding(
|
|||
Q_HEAD_NUM=q_head_num,
|
||||
K_HEAD_NUM=k_head_num,
|
||||
HEAD_DIM=head_dim,
|
||||
BLOCK_HEAD=BLOCK_HEAD,
|
||||
BLOCK_TOKENS=BLOCK_TOKENS,
|
||||
num_warps=num_warps,
|
||||
)
|
||||
return
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
ROOT=$(realpath $(dirname $0))
|
||||
echo $ROOT
|
||||
PY_SCRIPT=${ROOT}/benchmark_llama.py
|
||||
GPU=$(nvidia-smi -L | head -1 | cut -d' ' -f4 | cut -d'-' -f1)
|
||||
mode=$1
|
||||
|
|
|
@ -3,7 +3,7 @@ import torch
|
|||
from packaging import version
|
||||
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
|
||||
|
||||
from colossalai.kernel.triton import rotary_embedding
|
||||
from colossalai.kernel.triton import copy_kv_to_blocked_cache, rotary_embedding
|
||||
from tests.test_infer.test_ops.triton.kernel_utils import mock_alloc_block_table_and_kvcache_v2
|
||||
|
||||
try:
|
||||
|
@ -94,8 +94,8 @@ configs = [
|
|||
x_names=["num_tokens"],
|
||||
x_vals=[2**i for i in range(4, 11)],
|
||||
line_arg="provider",
|
||||
line_vals=["torch_rotary_emb_func", "triton_rotary_emb_func"],
|
||||
line_names=["torch_rotary_emb_func", "triton_rotary_emb_func"],
|
||||
line_vals=["no_fused_rotary_emb_func", "fused_triton_rotary_emb_func"],
|
||||
line_names=["no_fused_rotary_emb_func", "fused_triton_rotary_emb_func"],
|
||||
styles=[("red", "-"), ("blue", "-")],
|
||||
ylabel="ms",
|
||||
plot_name=f"rotary_emb-batch-{BATCH}",
|
||||
|
@ -110,11 +110,16 @@ def benchmark_rotary_emb(
|
|||
num_tokens: int,
|
||||
num_kv_heads: int,
|
||||
):
|
||||
BATCH_SIZE = 4
|
||||
SEQ_LEN = num_tokens // BATCH_SIZE
|
||||
max_num_blocks_per_seq = 8
|
||||
block_size = 64
|
||||
warmup = 10
|
||||
rep = 100
|
||||
|
||||
head_dim = 128
|
||||
head_dim = 256
|
||||
dtype = torch.float16
|
||||
|
||||
q_shape = (num_tokens, num_kv_heads, head_dim)
|
||||
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
|
||||
k_shape = (num_tokens, num_kv_heads, head_dim)
|
||||
|
@ -122,11 +127,26 @@ def benchmark_rotary_emb(
|
|||
cos_shape = (num_tokens, head_dim // 2)
|
||||
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||||
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||||
cache_shape = (BATCH_SIZE * max_num_blocks_per_seq, num_kv_heads, block_size, head_dim)
|
||||
k_cache = torch.zeros(size=cache_shape, dtype=dtype, device="cuda")
|
||||
v = torch.randn_like(k)
|
||||
v_cache = torch.zeros_like(k_cache)
|
||||
past_kv_seq_lengths = torch.tensor([SEQ_LEN - 1 for _ in range(BATCH_SIZE)], dtype=torch.int32, device="cuda")
|
||||
block_tables = mock_alloc_block_table_and_kvcache_v2(
|
||||
k, v, k_cache, v_cache, past_kv_seq_lengths, BATCH_SIZE, max_num_blocks_per_seq, block_size
|
||||
)
|
||||
new_k = torch.randn((BATCH_SIZE, num_kv_heads, head_dim), dtype=dtype, device="cuda")
|
||||
new_q = torch.randn_like(new_k)
|
||||
kv_seq_lengths = past_kv_seq_lengths + 1
|
||||
block_tables = block_tables.to(device="cuda")
|
||||
|
||||
if provider == "torch_rotary_emb_func":
|
||||
fn = lambda: torch_rotary_emb(q, cos, sin)
|
||||
elif provider == "triton_rotary_emb_func":
|
||||
fn = lambda: rotary_embedding(q, k, cos, sin)
|
||||
if provider == "no_fused_rotary_emb_func":
|
||||
fn = lambda: [
|
||||
rotary_embedding(new_q, new_k, cos, sin),
|
||||
copy_kv_to_blocked_cache(new_k, k_cache, kv_lengths=kv_seq_lengths, block_tables=block_tables),
|
||||
]
|
||||
elif provider == "fused_triton_rotary_emb_func":
|
||||
fn = lambda: rotary_embedding(new_q, new_k, cos, sin, k_cache, block_tables, kv_seq_lengths)
|
||||
else:
|
||||
raise ValueError("Undefined provider")
|
||||
|
||||
|
@ -135,5 +155,5 @@ def benchmark_rotary_emb(
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_rotary_emb(4, 64, 32, 64, torch.float32)
|
||||
# benchmark_rotary_emb.run(save_path=".",print_data=True)
|
||||
# test_rotary_emb(4, 64, 32, 64, torch.float32)
|
||||
benchmark_rotary_emb.run(save_path=".", print_data=True)
|
||||
|
|
Loading…
Reference in New Issue