fix some typo with colossalai/device colossalai/tensor/ etc. (#4171)

Co-authored-by: flybird11111 <1829166702@qq.com>
pull/4127/head^2
digger yu 2023-09-12 17:41:52 +08:00 committed by GitHub
parent d8ceeac14e
commit 9c2feb2f0b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 12 additions and 12 deletions

View File

@ -59,7 +59,7 @@ class DeviceMesh:
# 2. directly supply the logical mesh id
assert mesh_shape is None or logical_mesh_id is None, \
"Only one of mesh_shape and logical_mesh_id can be specified." \
"Logical mesh IDs are obtained from either mesh_shape + phyiscal_mesh_id or directly from the user-supplied logical_mesh_id"
"Logical mesh IDs are obtained from either mesh_shape + physical_mesh_id or directly from the user-supplied logical_mesh_id"
if logical_mesh_id is None:
self._mesh_shape = mesh_shape
@ -74,7 +74,7 @@ class DeviceMesh:
assert torch.equal(torch.unique(self._physical_mesh_id), torch.unique(self.logical_mesh_id)), \
"physical and logical mesh IDs should contain the same elements, please check if you have consistent physical_mesh_id and logical_mesh_id."
assert torch.unique(self._physical_mesh_id).numel() == self._physical_mesh_id.numel(), \
"Found duplicate IDs in the phyiscal_mesh_id and this is not allowed, please check your physical_mesh_id again."
"Found duplicate IDs in the physical_mesh_id and this is not allowed, please check your physical_mesh_id again."
assert torch.unique(self.logical_mesh_id).numel() == self.logical_mesh_id.numel(), \
"Found duplicate IDs in the logical_mesh_id and this is not allowed, please check your logical_mesh_id again."
@ -118,7 +118,7 @@ class DeviceMesh:
self._global_rank_of_current_process = None
self._is_initialized = False
# attribute used to inidicate whether this objectd
# attribute used to indicate whether this object
# is created using DeviceMesh.from_process_group
# this attribute can be used to do some check in methods
# such get_process_group as no global rank information
@ -395,7 +395,7 @@ class DeviceMesh:
Example:
```python
sphysical_mesh_id = torch.arange(0, 16)
physical_mesh_id = torch.arange(0, 16)
mesh_shape = (4, 4)
# logical mesh will look like
@ -438,7 +438,7 @@ class DeviceMesh:
# the _local_rank refers to the local rank of the current process
for _local_rank in range(self.logical_mesh_id.shape[dim]):
# if this dimension is not initailized yet,
# if this dimension is not initialized yet,
# initialize it with an empty array
if dim not in processes_in_the_same_process_group:
processes_in_the_same_process_group[dim] = []
@ -447,7 +447,7 @@ class DeviceMesh:
process_coordinates = self._global_to_local_rank_mapping[global_rank].copy()
# replace the local rank in the given dimension with the
# lcoal rank of the current process iterated
# local rank of the current process iterated
process_coordinates[dim] = _local_rank
processes_in_the_same_process_group[dim].append(process_coordinates)

View File

@ -28,7 +28,7 @@ class CommSpec:
to determine the buffer shape, and logical_process_axis
Argument:
comm_pattern(CollectiveCommPattern): decribe the communication method used in this spec.
comm_pattern(CollectiveCommPattern): describe the communication method used in this spec.
process_group_dict(Dict): A dict which contains the process groups used to apply this CommSpec.
gather_dim(int, Optional): The gather_dim of the tensor will be gathered.
shard_dim(int, Optional): The shard_dim of the tensor will be sharded.

View File

@ -339,7 +339,7 @@ class ShapeConsistencyManager(metaclass=SingletonMeta):
RS01 -> RR
'''
valid_spec_dict = {}
comm_pathern = CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD
comm_pattern = CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD
tensor_dims = len(source_spec.entire_shape)
for f_index in range(tensor_dims - 1):
for b_index in range(f_index + 1, tensor_dims):
@ -362,7 +362,7 @@ class ShapeConsistencyManager(metaclass=SingletonMeta):
b_target_pair = (b_index, [])
gather_dim, logical_process_axes = mix_gather_simulator(f_target_pair, b_target_pair)
comm_spec = CommSpec(comm_pathern,
comm_spec = CommSpec(comm_pattern,
sharding_spec=source_spec,
gather_dim=gather_dim,
logical_process_axis=logical_process_axes,

View File

@ -43,7 +43,7 @@ def data_gen_for_t5_model():
# output transform function
output_transform_fn = lambda x: x
# define loss funciton
# define loss function
loss_fn_for_t5_model = lambda x: x.last_hidden_state.mean()
loss_fn_for_encoder_only = lambda x: x.last_hidden_state.mean()
loss_fn_for_conditional_generation = lambda x: x.loss

View File

@ -64,7 +64,7 @@ def check_torch_ddp_no_sync():
model = DummyModel()
criterion = lambda x: x.mean()
optimizer = SGD(model.parameters(), lr=1e-3)
# create a custom dasetset with 0 to 10
# create a custom dataset with 0 to 10
dataset = torch.arange(0, 10)
train_dataloader = plugin.prepare_dataloader(dataset, batch_size=2)
model, optimizer, criterion, train_dataloader, _ = booster.boost(model,

View File

@ -15,7 +15,7 @@ from colossalai.testing import rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
# test baisc fsdp function
# test basic fsdp function
def run_fn(model_fn, data_gen_fn, output_transform_fn):
plugin = TorchFSDPPlugin()
booster = Booster(plugin=plugin)