diff --git a/colossalai/inference/config.py b/colossalai/inference/config.py index a87cbaa70..a210fbf64 100644 --- a/colossalai/inference/config.py +++ b/colossalai/inference/config.py @@ -35,49 +35,60 @@ class InferenceConfig: """The inference configuration. Args: - micro_batch_size (int): the micro batch size, defaults to 1. Only useful when `pp_size` > 1. - micro_batch_buffer_size (int): the buffer size for micro batch. Normally, it should be the same as the number of pipeline stages. max_batch_size (int): Maximum batch size, defaults to 8. max_output_len (int): Maximum output length, defaults to 256. max_input_len (int): Maximum input length, defaults to 256. - block_size (int): The number of blocks in a logical block, defaults to 16. dtype (Union[str, torch.dtype]): The data type for weights and activations. - tp_size (int): Tensor parallel size, defaults to 1. - pp_size (int): Pipeline parallel size, defaults to 1. + prompt_template (Optional[str]): The prompt template for generation, defaults to None. + do_sample (bool): Whether to use sampling for generation, defaults to False. beam_width (int): The maximum beam width used to initialize KV Cache, defaults to 1. During generation, the beam width provided as sampling parameter should be less than or equivalent to this value. prefill_ratio (Optional[float]): A controling ratio for prefill and decoding in running list, defaults to 1.2. We will do a step of prefill when the actual value exceeds this ratio. pad_input: Whether to pad all inputs to the max length. - quant_mode (Optional[str]): Quantization mode. - revision (Optional[str]): The specific version(a branch, name, a commit id, or a tag name) of model to use. - prompt_template (Optional[str]): The prompt template for formatting the input text. Some built-in templates include 'llama' and 'vicuna'. Otherwise, the template should contain '{input_text}' for formatting the input text. + early_stopping (Optional[bool]): Whether to stop the generation when all beam hypotheses have finished or not, defaults to False. + top_k (Optional[int]): The number of highest probability vocabulary tokens to keep for top-k-filtering, defaults to None. + top_p (Optional[float]): The cumulative probability threshold for retaining tokens with a total probability above it, defaults to None. + min_p (Optional[float]): The minimum probability to keep for top-p filtering, defaults to None. + block_size (int): The number of blocks in a logical block, defaults to 16. + tp_size (int): Tensor parallel size, defaults to 1. + pp_size (int): Pipeline parallel size, defaults to 1. + micro_batch_size (int): the micro batch size, defaults to 1. Only useful when `pp_size` > 1. + micro_batch_buffer_size (int): the buffer size for micro batch. Normally, it should be the same as the number of pipeline stages. + """ - micro_batch_size: int = 1 - micro_batch_buffer_size: int = None + # NOTE: arrange configs according to their importance and frequency of usage + + # runtime limit max_batch_size: int = 8 max_output_len: int = 256 max_input_len: int = 256 - block_size: int = 16 + + # general configs dtype: Union[str, torch.dtype] = torch.float16 # use fp16 by default - tp_size: int = 1 - pp_size: int = 1 - # TODO: beam search is not support for now + # generation configs + prompt_template: Optional[str] = None do_sample: bool = False - beam_width: int = 1 - # the ratio of prefill sequences to decoding sequences, we do prefill step once the actual value exceeds ratio - prefill_ratio: Optional[float] = 1.2 + beam_width: int = 1 # TODO: beam search is not support for now + prefill_ratio: Optional[ + float + ] = 1.2 # the ratio of prefill sequences to decoding sequences, we do prefill step once the actual value exceeds ratio pad_input: bool = False - quant_mode: Optional[str] = None - revision: Optional[str] = None early_stopping: Optional[bool] = False - top_k: Optional[int] = None top_p: Optional[float] = None min_p: Optional[float] = None - prompt_template: Optional[str] = None + + # paged attention configs + block_size: int = 16 + + # model parallelism configs + tp_size: int = 1 + pp_size: int = 1 + micro_batch_size: int = 1 + micro_batch_buffer_size: int = None def __post_init__(self): self._verify_config() diff --git a/colossalai/inference/core/engine.py b/colossalai/inference/core/engine.py index 765fd9f04..5cc5062c7 100644 --- a/colossalai/inference/core/engine.py +++ b/colossalai/inference/core/engine.py @@ -130,7 +130,6 @@ class InferenceEngine: enable_flash_attention=False, enable_jit_fused=False, enable_sequence_parallelism=False, - extra_kwargs={"quant": self.inference_config.quant_mode}, ) shardformer = ShardFormer(shard_config=shardconfig) shard_model, _ = shardformer.optimize(model, model_policy)