[FAW] cpu caching operations (#1520)

pull/1522/head
Jiarui Fang 2022-08-30 14:50:02 +08:00 committed by GitHub
parent 481aecb05a
commit 9a9ef65313
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 86 additions and 64 deletions

View File

@ -30,6 +30,7 @@ class CachedParamMgr(torch.nn.Module):
`EvictionStrategy.LFU`: use the least frequently used cache. `EvictionStrategy.LFU`: use the least frequently used cache.
`EvictionStrategy.DATASET`: use the stats collected from the target dataset. It usually leads to less cpu-gpu communication volume. `EvictionStrategy.DATASET`: use the stats collected from the target dataset. It usually leads to less cpu-gpu communication volume.
Defaults to EvictionStrategy.DATASET. Defaults to EvictionStrategy.DATASET.
use_cpu_caching (bool, optional): use cpu to execute cache indexing. It is slower than use gpu.
""" """
def __init__( def __init__(
@ -39,6 +40,7 @@ class CachedParamMgr(torch.nn.Module):
buffer_size: int = 50_000, buffer_size: int = 50_000,
pin_weight: bool = False, pin_weight: bool = False,
evict_strategy: EvictionStrategy = EvictionStrategy.DATASET, evict_strategy: EvictionStrategy = EvictionStrategy.DATASET,
use_cpu_caching=False,
) -> None: ) -> None:
super(CachedParamMgr, self).__init__() super(CachedParamMgr, self).__init__()
self.buffer_size = buffer_size self.buffer_size = buffer_size
@ -48,6 +50,13 @@ class CachedParamMgr(torch.nn.Module):
self.pin_weight = pin_weight self.pin_weight = pin_weight
self.elem_size_in_byte = weight.element_size() self.elem_size_in_byte = weight.element_size()
self._cpu_caching = use_cpu_caching
if self._cpu_caching:
self._cache_dev = torch.device('cpu')
else:
self._cache_dev = torch.cuda.current_device()
# weight configure # weight configure
self._init_weight(weight) self._init_weight(weight)
@ -62,8 +71,13 @@ class CachedParamMgr(torch.nn.Module):
if self._evict_strategy == EvictionStrategy.LFU: if self._evict_strategy == EvictionStrategy.LFU:
# cache_row_idx -> frequency, freq of the cache rows. # cache_row_idx -> frequency, freq of the cache rows.
# classic lfu cache. evict the minimal freq value row in cuda cache. # classic lfu cache. evict the minimal freq value row in cuda cache.
if self._cpu_caching:
self.freq_cnter = torch.empty(self.cuda_row_num, device=self._cache_dev,
dtype=torch.long).fill_(sys.maxsize)
else:
self.register_buffer("freq_cnter", self.register_buffer("freq_cnter",
torch.empty(self.cuda_row_num, device=torch.cuda.current_device(), torch.empty(self.cuda_row_num, device=self._cache_dev,
dtype=torch.long).fill_(sys.maxsize), dtype=torch.long).fill_(sys.maxsize),
persistent=False) persistent=False)
@ -105,26 +119,32 @@ class CachedParamMgr(torch.nn.Module):
self.weight = weight.pin_memory() if self.pin_weight else weight self.weight = weight.pin_memory() if self.pin_weight else weight
# map original id to new id with respect to frequency # map original id to new id with respect to frequency
# id -> cpu_row_idx # id -> cpu_row_idx
if self._cpu_caching:
self.idx_map = torch.arange(self.num_embeddings, dtype=torch.long, device=self._cache_dev)
self.cached_idx_map = torch.empty(self.cuda_row_num, device=self._cache_dev, dtype=torch.long).fill_(-1)
self.inverted_cached_idx = torch.zeros(self.num_embeddings, device=self._cache_dev,
dtype=torch.long).fill_(-1)
else:
self.register_buffer( self.register_buffer(
"idx_map", "idx_map",
torch.arange(self.num_embeddings, dtype=torch.long, device=torch.cuda.current_device()), torch.arange(self.num_embeddings, dtype=torch.long, device=self._cache_dev),
persistent=False, persistent=False,
) )
# cached_idx_map: gpu_row_idx -> cpu_row_idx # cached_idx_map: gpu_row_idx -> cpu_row_idx
self.register_buffer("cached_idx_map", self.register_buffer("cached_idx_map",
torch.empty(self.cuda_row_num, device=torch.cuda.current_device(), torch.empty(self.cuda_row_num, device=self._cache_dev, dtype=torch.long).fill_(-1),
dtype=torch.long).fill_(-1),
persistent=False) persistent=False)
# cpu_row_id -> gpu_row_idx. # cpu_row_id -> gpu_row_idx.
# gpu_row_idx as -1 means cpu_row_id not in CUDA. # gpu_row_idx as -1 means cpu_row_id not in CUDA.
self.register_buffer("inverted_cached_idx", self.register_buffer("inverted_cached_idx",
torch.zeros(self.num_embeddings, device=torch.cuda.current_device(), torch.zeros(self.num_embeddings, device=self._cache_dev,
dtype=torch.long).fill_(-1), dtype=torch.long).fill_(-1),
persistent=False) persistent=False)
self.evict_backlist = torch.tensor([], device=torch.cuda.current_device()) self.evict_backlist = torch.tensor([], device=self._cache_dev)
# index copy buffer size should less than 10% of cuda weight. # index copy buffer size should less than 10% of cuda weight.
if self.buffer_size > 0: if self.buffer_size > 0:
@ -191,24 +211,24 @@ class CachedParamMgr(torch.nn.Module):
# extract rows from cpu weight # extract rows from cpu weight
if self._evict_strategy == EvictionStrategy.LFU and ids_freq_mapping is not None: if self._evict_strategy == EvictionStrategy.LFU and ids_freq_mapping is not None:
freq_value, preload_cpu_ids = torch.topk(ids_freq_mapping, preload_row_num, dim=0, largest=True) freq_value, preload_cpu_ids = torch.topk(ids_freq_mapping, preload_row_num, dim=0, largest=True)
preload_cuda_row_idxs = torch.arange(preload_row_num).cuda() preload_cuda_row_idxs = torch.arange(preload_row_num).to(self._cache_dev)
else: else:
preload_cpu_ids = torch.arange(preload_row_num) preload_cpu_ids = torch.arange(preload_row_num)
preload_cuda_row_idxs = preload_cpu_ids.cuda() preload_cuda_row_idxs = preload_cpu_ids.to(self._cache_dev)
if self.buffer_size > 0: if self.buffer_size > 0:
self.limit_buff_index_copyer.index_copy(0, self.limit_buff_index_copyer.index_copy(0,
src_index=preload_cpu_ids, src_index=preload_cpu_ids,
tgt_index=preload_cuda_row_idxs, tgt_index=preload_cuda_row_idxs.cuda(),
src=self.weight.view(self.num_embeddings, -1), src=self.weight.view(self.num_embeddings, -1),
tgt=self.cuda_cached_weight.view(self.cuda_row_num, -1)) tgt=self.cuda_cached_weight.view(self.cuda_row_num, -1))
else: else:
preload_rows = self.weight.view(self.num_embeddings, -1).index_select(0, preload_cpu_ids).cuda() preload_rows = self.weight.view(self.num_embeddings, -1).index_select(0, preload_cpu_ids).cuda()
self.cuda_cached_weight.view(self.cuda_row_num, -1).index_copy_(0, preload_cuda_row_idxs, self.cuda_cached_weight.view(self.cuda_row_num, -1).index_copy_(0, preload_cuda_row_idxs.cuda(),
preload_rows) preload_rows)
# update auxiliary info # update auxiliary info
self.cached_idx_map[preload_cuda_row_idxs] = preload_cpu_ids.cuda() self.cached_idx_map[preload_cuda_row_idxs] = preload_cpu_ids.to(self._cache_dev)
self.inverted_cached_idx[preload_cpu_ids] = preload_cuda_row_idxs self.inverted_cached_idx[preload_cpu_ids] = preload_cuda_row_idxs
self._cuda_available_row_num -= preload_row_num self._cuda_available_row_num -= preload_row_num
@ -217,7 +237,7 @@ class CachedParamMgr(torch.nn.Module):
if ids_freq_mapping is None: if ids_freq_mapping is None:
self.freq_cnter.index_fill_(0, preload_cuda_row_idxs, 0) self.freq_cnter.index_fill_(0, preload_cuda_row_idxs, 0)
else: else:
self.freq_cnter[preload_cuda_row_idxs] = freq_value.cuda() self.freq_cnter[preload_cuda_row_idxs] = freq_value.to(self._cache_dev)
print(f'Cache warmup finished cost {timer.elapsed} sec.') print(f'Cache warmup finished cost {timer.elapsed} sec.')
@ -227,7 +247,7 @@ class CachedParamMgr(torch.nn.Module):
""" """
slots = torch.nonzero(self.cached_idx_map > -1).squeeze(1) slots = torch.nonzero(self.cached_idx_map > -1).squeeze(1)
row_ids = self.cached_idx_map[slots] row_ids = self.cached_idx_map[slots]
rows = self.cuda_cached_weight.view(self.cuda_row_num, -1).index_select(0, slots).cpu() rows = self.cuda_cached_weight.view(self.cuda_row_num, -1).index_select(0, slots.cuda()).cpu()
self.weight.view(self.num_embeddings, -1).index_copy_(0, row_ids.cpu(), rows) self.weight.view(self.num_embeddings, -1).index_copy_(0, row_ids.cpu(), rows)
self.cached_idx_map.index_fill_(0, slots, -1) self.cached_idx_map.index_fill_(0, slots, -1)
self.inverted_cached_idx.index_fill_(0, row_ids, -1) self.inverted_cached_idx.index_fill_(0, row_ids, -1)
@ -276,6 +296,7 @@ class CachedParamMgr(torch.nn.Module):
torch.Tensor: indices on the cuda_cached_weight. torch.Tensor: indices on the cuda_cached_weight.
""" """
with record_function("(zhg) get unique indices"): with record_function("(zhg) get unique indices"):
ids = ids.to(self._cache_dev)
cpu_row_idxs, repeat_times = torch.unique(self.idx_map.index_select(0, ids), return_counts=True) cpu_row_idxs, repeat_times = torch.unique(self.idx_map.index_select(0, ids), return_counts=True)
assert len(cpu_row_idxs) <= self.cuda_row_num, \ assert len(cpu_row_idxs) <= self.cuda_row_num, \
@ -353,7 +374,8 @@ class CachedParamMgr(torch.nn.Module):
tgt=self.weight.view(self.num_embeddings, -1)) tgt=self.weight.view(self.num_embeddings, -1))
else: else:
# allocate tmp memory on CPU and copy rows on CUDA to CPU. # allocate tmp memory on CPU and copy rows on CUDA to CPU.
rows = self.cuda_cached_weight.view(self.cuda_row_num, -1).index_select(0, evict_gpu_row_idxs).cpu() rows = self.cuda_cached_weight.view(self.cuda_row_num,
-1).index_select(0, evict_gpu_row_idxs.cuda()).cpu()
self.weight.view(self.num_embeddings, -1).index_copy_(0, evict_info.cpu(), rows) self.weight.view(self.num_embeddings, -1).index_copy_(0, evict_info.cpu(), rows)
self.cached_idx_map.index_fill_(0, evict_gpu_row_idxs, -1) self.cached_idx_map.index_fill_(0, evict_gpu_row_idxs, -1)
@ -372,12 +394,12 @@ class CachedParamMgr(torch.nn.Module):
if self.buffer_size > 0: if self.buffer_size > 0:
self.limit_buff_index_copyer.index_copy(0, self.limit_buff_index_copyer.index_copy(0,
src_index=cpu_row_idxs.cpu(), src_index=cpu_row_idxs.cpu(),
tgt_index=slots, tgt_index=slots.cuda(),
src=self.weight.view(self.num_embeddings, -1), src=self.weight.view(self.num_embeddings, -1),
tgt=self.cuda_cached_weight.view(self.cuda_row_num, -1)) tgt=self.cuda_cached_weight.view(self.cuda_row_num, -1))
else: else:
rows = self.weight.view(self.num_embeddings, -1).index_select(0, cpu_row_idxs.cpu()).cuda() rows = self.weight.view(self.num_embeddings, -1).index_select(0, cpu_row_idxs.cpu()).cuda()
self.cuda_cached_weight.view(self.cuda_row_num, -1).index_copy_(0, slots, rows) self.cuda_cached_weight.view(self.cuda_row_num, -1).index_copy_(0, slots.cuda(), rows)
slot_offsets = slots slot_offsets = slots
self.cached_idx_map[slots] = cpu_row_idxs self.cached_idx_map[slots] = cpu_row_idxs
self.inverted_cached_idx.index_copy_(0, cpu_row_idxs, slot_offsets) self.inverted_cached_idx.index_copy_(0, cpu_row_idxs, slot_offsets)

View File

@ -74,8 +74,8 @@ class FreqAwareEmbeddingBag(BaseEmbeddingBag):
with torch.no_grad(): with torch.no_grad():
reorder_ids = self.cache_weight_mgr.prepare_ids(indices) reorder_ids = self.cache_weight_mgr.prepare_ids(indices)
embeddings = F.embedding_bag(reorder_ids, self.cache_weight_mgr.cuda_cached_weight, offsets, self.max_norm, embeddings = F.embedding_bag(reorder_ids.cuda(), self.cache_weight_mgr.cuda_cached_weight, offsets,
self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse,
per_sample_weights, self.include_last_offset, self.padding_idx) per_sample_weights, self.include_last_offset, self.padding_idx)
if shape_hook is not None: if shape_hook is not None:
embeddings = shape_hook(embeddings) embeddings = shape_hook(embeddings)

View File

@ -8,6 +8,7 @@ from colossalai.nn._ops._utils import dual_all_to_all
from colossalai.tensor import ColoParameter, ShardSpec, ComputePattern, ProcessGroup, ColoTensorSpec, ColoTensor from colossalai.tensor import ColoParameter, ShardSpec, ComputePattern, ProcessGroup, ColoTensorSpec, ColoTensor
from .cache_mgr import CachedParamMgr, EvictionStrategy from .cache_mgr import CachedParamMgr, EvictionStrategy
def get_partition(embedding_dim, rank, world_size) -> Tuple[int, int, bool]: def get_partition(embedding_dim, rank, world_size) -> Tuple[int, int, bool]:
if world_size == 1: if world_size == 1:
return 0, embedding_dim, True return 0, embedding_dim, True
@ -29,8 +30,7 @@ def get_partition(embedding_dim, rank, world_size) -> Tuple[int, int, bool]:
class ParallelFreqAwareEmbeddingBag(FreqAwareEmbeddingBag): class ParallelFreqAwareEmbeddingBag(FreqAwareEmbeddingBag):
def __init__( def __init__(self,
self,
num_embeddings, num_embeddings,
embedding_dim, embedding_dim,
padding_idx=None, padding_idx=None,
@ -48,8 +48,7 @@ class ParallelFreqAwareEmbeddingBag(FreqAwareEmbeddingBag):
warmup_ratio=0.7, warmup_ratio=0.7,
buffer_size=50_000, buffer_size=50_000,
pin_weight=False, pin_weight=False,
evict_strategy: EvictionStrategy = EvictionStrategy.DATASET evict_strategy: EvictionStrategy = EvictionStrategy.DATASET):
):
self.rank = torch.distributed.get_rank() self.rank = torch.distributed.get_rank()
self.world_size = torch.distributed.get_world_size() self.world_size = torch.distributed.get_world_size()
@ -60,7 +59,7 @@ class ParallelFreqAwareEmbeddingBag(FreqAwareEmbeddingBag):
super(ParallelFreqAwareEmbeddingBag, super(ParallelFreqAwareEmbeddingBag,
self).__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, self).__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq,
sparse, _weight, mode, include_last_offset, dtype, device, cuda_row_num, ids_freq_mapping, sparse, _weight, mode, include_last_offset, dtype, device, cuda_row_num, ids_freq_mapping,
warmup_ratio, buffer_size, pin_weight,evict_strategy) warmup_ratio, buffer_size, pin_weight, evict_strategy)
def _weight_alloc(self, dtype, device): def _weight_alloc(self, dtype, device):
weight = torch.empty(self.num_embeddings, self.embedding_dim_per_partition, device=device, dtype=dtype) weight = torch.empty(self.num_embeddings, self.embedding_dim_per_partition, device=device, dtype=dtype)
@ -77,8 +76,8 @@ class ParallelFreqAwareEmbeddingBag(FreqAwareEmbeddingBag):
with torch.no_grad(): with torch.no_grad():
reorder_ids = self.cache_weight_mgr.prepare_ids(indices) reorder_ids = self.cache_weight_mgr.prepare_ids(indices)
output_shard = F.embedding_bag(reorder_ids, self.cache_weight_mgr.cuda_cached_weight, offsets, self.max_norm, output_shard = F.embedding_bag(reorder_ids.cuda(), self.cache_weight_mgr.cuda_cached_weight, offsets,
self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse,
per_sample_weights, self.include_last_offset, self.padding_idx) per_sample_weights, self.include_last_offset, self.padding_idx)
if shape_hook is not None: if shape_hook is not None:

View File

@ -83,15 +83,16 @@ def test_reorder_with_freq():
chunkid.append(idx // chunk_size) chunkid.append(idx // chunk_size)
offset_in_chunk.append(idx % chunk_size) offset_in_chunk.append(idx % chunk_size)
chunkid = torch.tensor(chunkid, dtype=torch.long, device=torch.cuda.current_device()) dev = torch.device('cuda')
offset_in_chunk = torch.tensor(offset_in_chunk, dtype=torch.long, device=torch.cuda.current_device()) chunkid = torch.tensor(chunkid, dtype=torch.long, device=dev)
offset_in_chunk = torch.tensor(offset_in_chunk, dtype=torch.long, device=dev)
weight = torch.rand(num_embed, 2) weight = torch.rand(num_embed, 2)
mgr = CachedParamMgr(weight, num_chunk) mgr = CachedParamMgr(weight, num_chunk, use_cpu_caching=dev.type == 'cpu')
mgr.reorder(idx_map) mgr.reorder(idx_map)
indices = mgr.idx_map.index_select(0, torch.arange(num_embed, dtype=torch.long, device=torch.cuda.current_device())) indices = mgr.idx_map.index_select(0, torch.arange(num_embed, dtype=torch.long, device=dev))
mgr_chunk_id = torch.div(indices, chunk_size, rounding_mode='floor') mgr_chunk_id = torch.div(indices, chunk_size, rounding_mode='floor')
mgr_offsets = torch.remainder(indices, chunk_size) mgr_offsets = torch.remainder(indices, chunk_size)
assert torch.allclose(chunkid, mgr_chunk_id), f"chunk id: {chunkid}, mgr: {mgr_chunk_id}" assert torch.allclose(chunkid, mgr_chunk_id), f"chunk id: {chunkid}, mgr: {mgr_chunk_id}"
@ -280,6 +281,6 @@ def test_parallel_freq_aware_embed(world_size):
if __name__ == '__main__': if __name__ == '__main__':
# test_freq_aware_embed(True) test_freq_aware_embed(True)
# test_parallel_freq_aware_embed(2) # test_parallel_freq_aware_embed(2)
test_lfu_strategy(False) # test_lfu_strategy(False)