ckpt_api
wangbluo 2024-11-18 07:06:04 +00:00
parent 184a653704
commit 974449ace0
1 changed files with 42 additions and 8 deletions

View File

@ -35,7 +35,13 @@ OPTIM_PLACEMENT_CONFIGS = [
@parameterize("use_safetensors", [False, True]) @parameterize("use_safetensors", [False, True])
@parameterize("tp_size", [1, 2]) @parameterize("tp_size", [1, 2])
@parameterize("zero_size", [2]) @parameterize("zero_size", [2])
def exam_state_dict_with_origin(placement_config, model_name, use_safetensors: bool, tp_size: int, zero_size: int): def exam_state_dict_with_origin(
placement_config,
model_name,
use_safetensors: bool,
tp_size: int,
zero_size: int,
):
from transformers import BertForSequenceClassification from transformers import BertForSequenceClassification
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values())) (model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
@ -71,6 +77,8 @@ def exam_state_dict_with_origin(placement_config, model_name, use_safetensors: b
(model_size / 3), (model_size / 3),
use_safetensors=use_safetensors, use_safetensors=use_safetensors,
) )
booster.checkpoint_io._sync_d2h()
booster.checkpoint_io._sync_io()
dist.barrier() dist.barrier()
new_bert_model = BertForSequenceClassification.from_pretrained(pretrained_path) new_bert_model = BertForSequenceClassification.from_pretrained(pretrained_path)
check_state_dict_equal(bert_model.state_dict(only_rank_0=False), new_bert_model.state_dict()) check_state_dict_equal(bert_model.state_dict(only_rank_0=False), new_bert_model.state_dict())
@ -78,12 +86,20 @@ def exam_state_dict_with_origin(placement_config, model_name, use_safetensors: b
@clear_cache_before_run() @clear_cache_before_run()
@parameterize("placement_config", OPTIM_PLACEMENT_CONFIGS) @parameterize("placement_config", OPTIM_PLACEMENT_CONFIGS)
@parameterize("shard", [True, False]) @parameterize("shard", [False])
@parameterize("model_name", ["transformers_llama_for_causal_lm"]) @parameterize("model_name", ["transformers_llama_for_causal_lm"])
@parameterize("size_per_shard", [32]) @parameterize("size_per_shard", [32])
@parameterize("tp_size", [1, 2]) @parameterize("tp_size", [1, 2])
@parameterize("zero_size", [2]) @parameterize("zero_size", [2])
def exam_state_dict(placement_config, shard: bool, model_name: str, size_per_shard: int, tp_size: int, zero_size: int): @parameterize(
"use_async",
[
True,
],
)
def exam_state_dict(
placement_config, shard: bool, model_name: str, size_per_shard: int, tp_size: int, zero_size: int, use_async: bool
):
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values())) (model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
criterion = lambda x: x.mean() criterion = lambda x: x.mean()
enable_flash_attention = True if tp_size > 1 else False enable_flash_attention = True if tp_size > 1 else False
@ -121,17 +137,35 @@ def exam_state_dict(placement_config, shard: bool, model_name: str, size_per_sha
for group in optimizer.param_groups: for group in optimizer.param_groups:
group["lr"] = 0.1 group["lr"] = 0.1
with shared_tempdir() as tempdir: """output_dir = "./checkpoints"
model_ckpt_path = f"{tempdir}/model" import os
optimizer_ckpt_path = f"{tempdir}/optimizer" os.makedirs(output_dir, exist_ok=True)
booster.save_model( model_ckpt_path = f"{output_dir}/model"
optimizer_ckpt_path = f"{output_dir}/optimizer"
if not shard:
model_ckpt_path = f"{model_ckpt_path}.safetensors"
print("model_ckpt_path", model_ckpt_path)
booster.save_model(
model, model,
model_ckpt_path, model_ckpt_path,
shard=shard, shard=shard,
size_per_shard=size_per_shard, size_per_shard=size_per_shard,
use_async=use_async
) )
booster.save_optimizer(optimizer, optimizer_ckpt_path, shard=shard)"""
with shared_tempdir() as tempdir:
model_ckpt_path = f"{tempdir}/model"
optimizer_ckpt_path = f"{tempdir}/optimizer"
if not use_async:
model_ckpt_path = f"{model_ckpt_path}.pt"
if use_async:
model_ckpt_path = f"{model_ckpt_path}.safetensors"
booster.save_model(model, model_ckpt_path, shard=shard, size_per_shard=size_per_shard, use_async=use_async)
booster.save_optimizer(optimizer, optimizer_ckpt_path, shard=shard, size_per_shard=size_per_shard) booster.save_optimizer(optimizer, optimizer_ckpt_path, shard=shard, size_per_shard=size_per_shard)
booster.checkpoint_io._sync_d2h()
booster.checkpoint_io._sync_io()
dist.barrier() dist.barrier()
booster.load_model(new_model, model_ckpt_path) booster.load_model(new_model, model_ckpt_path)
@ -180,7 +214,7 @@ def run_dist(rank, world_size, port):
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
exam_state_dict() exam_state_dict()
exam_state_dict_with_origin() exam_state_dict_with_origin()
exam_lazy_from_pretrained() # exam_lazy_from_pretrained()
@pytest.mark.dist @pytest.mark.dist