Merge pull request #5722 from botbw/prefetch

[gemini] prefetch chunks
pull/5731/head
botbw 2024-05-17 13:46:18 +08:00 committed by GitHub
commit 9690981601
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 134 additions and 34 deletions

View File

@ -329,6 +329,7 @@ class GeminiPlugin(DPPluginBase):
chunk_init_device: Optional[torch.device] = None,
placement_policy: str = "static",
enable_gradient_accumulation: bool = False,
max_prefetch: int = 0,
shard_param_frac: float = 1.0, # only for static placement
offload_optim_frac: float = 0.0, # only for static placement
offload_param_frac: float = 0.0, # only for static placement
@ -386,6 +387,7 @@ class GeminiPlugin(DPPluginBase):
memstats=memstats,
mixed_precision=PRECISION_STR_TO_DTYPE[precision],
master_weights=master_weights,
max_prefetch=max_prefetch,
)
self.zero_optim_config = dict(
gpu_margin_mem_ratio=gpu_margin_mem_ratio,

View File

@ -357,14 +357,14 @@ class Chunk:
else:
raise NotImplementedError
def access_chunk(self):
def access_chunk(self, async_access: bool = False) -> Optional[dist.Work]:
"""Make the chunk usable for the parameters inside it. It's an operation done in CUDA."""
# sanity check
assert self.chunk_temp is None
if not self.is_gathered:
self.__gather()
return self.__gather(async_op=async_access)
self.__update_tensors_ptr()
return None
def release_chunk(self):
"""Release the usable chunk. It's an operation done in CUDA."""
@ -498,17 +498,19 @@ class Chunk:
def get_tensors(self) -> List[torch.Tensor]:
return list(self.tensors_info.keys())
def __gather(self):
def __gather(self, async_op: bool = False) -> Optional[dist.Work]:
if not self.is_gathered:
# sanity check
assert self.cuda_shard is not None
alloc_storage(self.cuda_global_chunk)
gather_list = list(torch.chunk(input=self.cuda_global_chunk, chunks=self.pg_size, dim=0))
dist.all_gather(gather_list, self.cuda_shard, self.torch_pg)
work = dist.all_gather(gather_list, self.cuda_shard, self.torch_pg, async_op=async_op)
self.cuda_shard = None
self.is_gathered = True
return work
return None
def __scatter(self):
if self.keep_gathered:

View File

@ -111,15 +111,16 @@ class ChunkManager:
for group_name in self.chunk_groups:
self.__close_one_chunk(self.chunk_groups[group_name][-1])
def access_chunk(self, chunk: Chunk) -> None:
def access_chunk(self, chunk: Chunk, async_access: bool = False) -> Optional[dist.Work]:
"""Make the chunk can be used for calculation."""
if chunk in self.accessed_chunks:
return
return None
self.__sub_memory_usage(chunk.memory_usage)
if chunk.device_type == "cpu":
chunk.shard_move(get_accelerator().get_current_device())
self.__add_accessed_chunk(chunk)
maybe_work = self.__add_accessed_chunk(chunk, async_access=async_access)
self.__add_memory_usage(chunk.memory_usage)
return maybe_work
def release_chunk(self, chunk: Chunk) -> None:
"""Scatter the chunk in CUDA."""
@ -251,10 +252,11 @@ class ChunkManager:
for k, v in usage.items():
self.total_mem[k] += v
def __add_accessed_chunk(self, chunk: Chunk):
chunk.access_chunk()
def __add_accessed_chunk(self, chunk: Chunk, async_access: bool = False) -> Optional[dist.Work]:
maybe_work = chunk.access_chunk(async_access=async_access)
self.accessed_chunks.add(chunk)
self.accessed_mem += chunk.chunk_mem
return maybe_work
def __sub_accessed_chunk(self, chunk: Chunk):
chunk.release_chunk()

View File

@ -78,6 +78,7 @@ class GeminiDDP(ModelWrapper):
chunk_init_device: torch.device = torch.device("cpu"),
placement_policy: str = "static",
enable_gradient_accumulation: bool = False,
max_prefetch: int = 0,
shard_param_frac: float = 1.0, # only for static placement
offload_optim_frac: float = 0.0, # only for static placement
offload_param_frac: float = 0.0, # only for static placement
@ -130,6 +131,7 @@ class GeminiDDP(ModelWrapper):
offload_param_frac=offload_param_frac,
warmup_non_model_data_ratio=warmup_non_model_data_ratio,
steady_cuda_cap_ratio=steady_cuda_cap_ratio,
max_prefetch=max_prefetch,
)
self.force_outputs_fp32 = force_outputs_fp32
self.param_op_hook = GeminiZeROHook(self.gemini_manager)

View File

@ -5,6 +5,7 @@ from typing import List
import torch
from colossalai.logging import DistributedLogger
from colossalai.tensor.param_op_hook import ColoParamOpHook
from colossalai.utils import is_ddp_ignored
from colossalai.zero.gemini import TensorState
@ -16,6 +17,9 @@ class TrainingPhase(Enum):
BACKWARD = 1
logger = DistributedLogger("gemini_hook")
class GeminiZeROHook(ColoParamOpHook):
def __init__(self, gemini_manager: GeminiManager) -> None:
super().__init__()
@ -24,16 +28,37 @@ class GeminiZeROHook(ColoParamOpHook):
self._training_phase = TrainingPhase.FORWARD
def pre_op(self, params):
# map params to chunks
params = [p for p in params if not is_ddp_ignored(p)]
chunks = self._chunk_manager.get_chunks(params)
all_chunks = self._chunk_manager.get_chunks(params)
# wait for prefetched chunks, filter those are not prefetched
chunks_fetch_sync = self._gemini_manager.wait_chunks(all_chunks)
# transfer state
for p in params:
self._chunk_manager.trans_tensor_state(p, TensorState.COMPUTE)
self._gemini_manager.sample_overall_data()
self._gemini_manager.adjust_layout(chunks)
for chunk in chunks:
# evit chunks, aware of async fetched
self._gemini_manager.adjust_layout(
all_chunks, record_anyway=self._gemini_manager.placement_policy.max_prefetch > 0
)
# fetch the rest synchronously
for chunk in chunks_fetch_sync:
self._chunk_manager.access_chunk(chunk)
# record cuda model data of the current OP
# get possible chunks to prefetch
chunks_fetch_async = self._gemini_manager.placement_policy.get_prefetch_chunks()
# prefetch
for chunk in chunks_fetch_async:
maybe_work = self._chunk_manager.access_chunk(chunk, async_access=True)
if maybe_work is not None:
self._gemini_manager.add_work(chunk, maybe_work)
# record cuda model data of the current OP, including memory for prefetched chunks
self._gemini_manager.record_model_data_volume()
def post_op(self, params):

View File

@ -1,12 +1,13 @@
import functools
from time import time
from typing import Dict, List, Optional, Tuple
from typing import Dict, Iterable, List, Optional, Tuple
import torch
import torch.distributed as dist
from .chunk import Chunk, ChunkManager
from .memory_tracer import ChunkMemStatsCollector, MemStats
from .placement_policy import PlacementPolicyFactory
from .placement_policy import PlacementPolicy, PlacementPolicyFactory
class GeminiManager:
@ -41,9 +42,10 @@ class GeminiManager:
self._mem_stats_collector = (
ChunkMemStatsCollector(chunk_manager, self._memstats) if policy_cls.need_mem_stats else None
)
self._placement_policy = policy_cls(chunk_manager, self._mem_stats_collector, **placement_kwargs)
self._placement_policy = policy_cls(self, chunk_manager, self._mem_stats_collector, **placement_kwargs)
self._compute_list: List[Tuple[Chunk, ...]] = []
self._compute_idx: int = -1
self._async_works: Dict[Chunk, dist.work] = {}
self._h2d_volume = 0
self._d2h_volume = 0
@ -91,18 +93,20 @@ class GeminiManager:
self._warmup = False
self.reset_attributes()
def adjust_layout(self, chunks: Tuple[Chunk, ...]) -> None:
def adjust_layout(self, chunks: Tuple[Chunk, ...], record_anyway: bool = False) -> None:
"""Adjust the layout of stateful tensors according to the information provided
by mem_stats_collector, which should belongs to a Sharded Model.
"""
# find stateful tensor in state COMPUTE
start = time()
self._record_chunks_order(chunks)
cuda_demand, hold_cuda_tensor_list = self._get_layout_info(self._compute_idx, self._warmup, chunks)
self._record_warmup_chunks_order(chunks, record_anyway=record_anyway)
cuda_demand, can_evict_chunks = self._get_layout_info(self._compute_idx, self._warmup, chunks)
# don't evict chunks that are asynchronously fetched
can_evict_chunks = [chunk for chunk in can_evict_chunks if chunk not in self._async_works]
self._layout_time += time() - start
vol, evict_time = self._placement_policy.evict_tensors(
can_evict_chunks=hold_cuda_tensor_list,
can_evict_chunks=can_evict_chunks,
cuda_demand=cuda_demand,
warmup=self._warmup,
compute_list=self._compute_list,
@ -114,6 +118,21 @@ class GeminiManager:
# move COMPUTE tensors to CUDA
self._h2d_volume += cuda_demand
def wait_chunks(self, chunks: Iterable[Chunk]) -> Tuple[Chunk]:
non_prefetched_chunks = []
for chunk in chunks:
if chunk in self._async_works:
self._async_works[chunk].wait()
del self._async_works[chunk]
else:
non_prefetched_chunks.append(chunk)
return tuple(non_prefetched_chunks)
def add_work(self, chunk: Chunk, work: dist.Work):
assert work is not None
assert chunk not in self._async_works
self._async_works[chunk] = work
@functools.lru_cache(maxsize=None)
def _get_layout_info(self, compute_idx: int, warmup: bool, chunks: Tuple[Chunk, ...]):
start = time()
@ -133,9 +152,9 @@ class GeminiManager:
can_evict_chunks = self._chunk_manager.get_cuda_movable_chunks()
return cuda_demand, can_evict_chunks
def _record_chunks_order(self, chunks: Tuple[Chunk, ...]) -> None:
def _record_warmup_chunks_order(self, chunks: Tuple[Chunk, ...], record_anyway: bool = False) -> None:
self._compute_idx += 1
if self._warmup and self._placement_policy.need_mem_stats:
if self._warmup and (self._placement_policy.need_mem_stats or record_anyway):
self._compute_list.append(chunks)
def sample_overall_data(self):
@ -156,6 +175,18 @@ class GeminiManager:
return self._mem_stats_collector.cuda_margin_mem
return None
@property
def compute_list(self) -> List[Tuple[Chunk, ...]]:
return self._compute_list
@property
def compute_idx(self) -> int:
return self._compute_idx
@property
def placement_policy(self) -> PlacementPolicy:
return self._placement_policy
@property
def is_cuda_margin_mem_avail(self) -> bool:
return self._placement_policy.need_mem_stats

View File

@ -18,10 +18,17 @@ class PlacementPolicy(ABC):
need_mem_stats: bool = False
def __init__(
self, chunk_manager: ChunkManager, mem_stats_collector: Optional[ChunkMemStatsCollector] = None, **kwargs
self,
gemini_manager: "GeminiManager",
chunk_manager: ChunkManager,
mem_stats_collector: Optional[ChunkMemStatsCollector] = None,
max_prefetch: int = 0,
**kwargs,
) -> None:
self.gemini_manager = gemini_manager
self.chunk_manager = chunk_manager
self.mem_stats_collector: Optional[ChunkMemStatsCollector] = mem_stats_collector
self.max_prefetch = max_prefetch
@abstractmethod
def evict_tensors(self, can_evict_chunks: List[Chunk], **kwargs) -> Tuple[int, float]:
@ -33,18 +40,26 @@ class PlacementPolicy(ABC):
) -> None:
raise NotImplementedError
@abstractmethod
def get_prefetch_chunks(self) -> List[Chunk]:
raise NotImplementedError
class StaticPlacementPolicy(PlacementPolicy):
def __init__(
self,
gemini_manager: "GeminiManager",
chunk_manager: ChunkManager,
mem_stats_collector: Optional[ChunkMemStatsCollector] = None,
max_prefetch: int = 0,
shard_param_frac: float = 1.0,
offload_optim_frac: float = 0.0,
offload_param_frac: float = 0.0,
**kwargs,
) -> None:
super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector)
super().__init__(
gemini_manager, chunk_manager, mem_stats_collector=mem_stats_collector, max_prefetch=max_prefetch
)
if offload_param_frac > 0.0 and (shard_param_frac != 1.0 or offload_optim_frac != 1.0):
warnings.warn("offload_param_frac is ignored when shard_param_frac != 1.0 or offload_optim_frac != 1.0")
offload_param_frac = 0.0
@ -95,19 +110,38 @@ class StaticPlacementPolicy(PlacementPolicy):
self.keep_gathered_chunk_mem = total_chunk_mem * (1 - self.shard_param_frac)
self.keep_cuda_chunk_mem = total_chunk_mem * (1 - self.offload_param_frac)
def get_prefetch_chunks(self) -> List[Chunk]:
if self.gemini_manager.is_warmup(): # no prefetch during warmup since we need compute_list
return []
can_prefetch = self.max_prefetch - len(self.gemini_manager._async_works)
prefetch = []
for i in range(self.gemini_manager.compute_idx + 1, len(self.gemini_manager.compute_list)):
for chunk in self.gemini_manager.compute_list[i]:
if len(prefetch) >= can_prefetch:
break
if chunk not in prefetch and chunk not in self.chunk_manager.accessed_chunks:
prefetch.append(chunk)
if len(prefetch) >= can_prefetch:
break
return prefetch
class AutoPlacementPolicy(PlacementPolicy):
need_mem_stats: bool = True
def __init__(
self,
gemini_manager: "GeminiManager",
chunk_manager: ChunkManager,
mem_stats_collector: Optional[ChunkMemStatsCollector] = None,
max_prefetch: int = 0,
warmup_non_model_data_ratio: float = 0.8,
steady_cuda_cap_ratio: float = 0.9,
**kwargs,
) -> None:
super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector)
super().__init__(
gemini_manager, chunk_manager, mem_stats_collector=mem_stats_collector, max_prefetch=max_prefetch
)
# model data will use 1-_warmup_non_model_data_ratio CUDA memory in warmup phase
# you can set them by AutoPlacementPolicy.set_warmup_non_model_data_ratio()
# and AutoPlacementPolicy.set_steady_cuda_cap_ratio()
@ -198,6 +232,9 @@ class AutoPlacementPolicy(PlacementPolicy):
else:
grads_device_map[p] = torch.device("cpu")
def get_prefetch_chunks(self, max_prefetch: int) -> List[Chunk]:
return [] # TODO @botbw: implement prefetching for auto
class PlacementPolicyFactory:
policies: Dict[str, Type[PlacementPolicy]] = {

View File

@ -30,8 +30,9 @@ def get_profile_context(enable_flag, warmup_steps, active_steps, save_dir):
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
schedule=schedule(wait=0, warmup=warmup_steps, active=active_steps),
on_trace_ready=tensorboard_trace_handler(save_dir),
record_shapes=True,
profile_memory=True,
# record_shapes=True,
# profile_memory=True,
with_stack=True,
)
else:
return nullcontext(DummyProfiler())

View File

@ -129,7 +129,7 @@ def main():
WARMUP_STEPS = 1
assert WARMUP_STEPS < NUM_STEPS, "warmup steps should smaller than the total steps"
assert (NUM_STEPS - WARMUP_STEPS) % 2 == 1, "the number of valid steps should be odd to take the median"
PROF_FLAG = False # The flag of profiling, False by default
PROF_FLAG = True # The flag of profiling, False by default
disable_existing_loggers()
colossalai.launch_from_torch()
@ -166,7 +166,7 @@ def main():
stage=zero_stage, reduce_bucket_size_in_m=12, overlap_communication=True, verbose=True
)
elif args.distplan == "CAI_Gemini":
plugin = GeminiPlugin(search_range_m=128, hidden_dim=model.config.n_embd)
plugin = GeminiPlugin(search_range_m=128, hidden_dim=model.config.n_embd, max_prefetch=1)
else:
raise RuntimeError
@ -248,7 +248,7 @@ def main():
prof.step()
tflops_list.sort()
median_index = ((NUM_STEPS - WARMUP_STEPS) >> 1) + WARMUP_STEPS
median_index = min(((NUM_STEPS - WARMUP_STEPS) >> 1) + WARMUP_STEPS, len(tflops_list) - 1)
logger.info(f"Median TFLOPS is {tflops_list[median_index]:.3f}")
torch.cuda.synchronize()

View File

@ -40,9 +40,7 @@ EXAMPLE_MODELS = [
]
# bfloat16 cannot represent them exactly
BF16_IGNORED_KEYS = [
"masked_bias",
]
BF16_IGNORED_KEYS = ["masked_bias"]
def check_param(model: GeminiDDP, torch_model: torch.nn.Module, dtype: torch.dtype):