Optimize pipeline schedule (#94)

* add pipeline shared module wrapper and update load batch

* added model parallel process group for amp and clip grad (#86)

* added model parallel process group for amp and clip grad

* update amp and clip with model parallel process group

* remove pipeline_prev/next group (#88)

* micro batch offload

* optimize pipeline gpu memory usage

* pipeline can receive tensor shape (#93)

* optimize pipeline gpu memory usage

* fix grad accumulation step counter

* rename classes and functions

Co-authored-by: Frank Lee <somerlee.9@gmail.com>
pull/97/head
ver217 2021-12-30 15:56:46 +08:00 committed by GitHub
parent e5b9f9a08d
commit 96780e6ee4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
29 changed files with 423 additions and 290 deletions

View File

@ -359,12 +359,7 @@ class FP16Optimizer(Optimizer):
# Update across all model parallel instances.
torch.distributed.all_reduce(self.found_inf,
op=torch.distributed.ReduceOp.MAX,
group=gpc.get_group(ParallelMode.TENSOR))
if is_using_pp():
torch.distributed.all_reduce(self.found_inf,
op=torch.distributed.ReduceOp.MAX,
group=gpc.get_group(ParallelMode.PIPELINE))
group=gpc.get_group(ParallelMode.MODEL))
# Check for nan.
found_inf_flag = (self.found_inf.item() > 0)

View File

@ -11,6 +11,7 @@ from typing import Any, Dict, List, Optional, Tuple
from colossalai.context import ParallelMode
import torch.distributed as dist
from colossalai.core import global_context as gpc
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
class _MultiDeviceReplicator(object):
@ -247,10 +248,14 @@ class GradScaler(object):
device),
per_device_inv_scale.get(device))
# For tensor parallel paramters it should be all-reduced over tensor parallel process group
if gpc.is_initialized(ParallelMode.TENSOR) and gpc.get_world_size(ParallelMode.TENSOR) > 1:
for tensor in per_device_found_inf._per_device_tensors.values():
dist.all_reduce(tensor, op=dist.ReduceOp.MAX,
group=gpc.get_group(ParallelMode.TENSOR))
if gpc.is_initialized(ParallelMode.MODEL) and gpc.get_world_size(ParallelMode.MODEL) > 1:
vals = [val for val in per_device_found_inf._per_device_tensors.values()]
coalesced = _flatten_dense_tensors(vals)
dist.all_reduce(coalesced,
op=dist.ReduceOp.MAX,
group=gpc.get_group(ParallelMode.MODEL))
for buf, synced in zip(vals, _unflatten_dense_tensors(coalesced, vals)):
buf.copy_(synced)
return per_device_found_inf._per_device_tensors
def unscale_(self, optimizer):

View File

@ -112,7 +112,7 @@ def _binary_search(weights, num):
return intervals
def _partition_uniform(num_items, pipeline_parallel_size, num_chunks):
def partition_uniform(num_items, pipeline_parallel_size, num_chunks):
assert num_items % num_chunks == 0, \
"Layer length should be divided by the number of chunks, otherwise parameter method is recomended"
@ -134,11 +134,11 @@ def _partition_uniform(num_items, pipeline_parallel_size, num_chunks):
return parts
def _partition_balanced(weights, pipeline_parallel_size, num_chunks):
def partition_balanced(weights, pipeline_parallel_size, num_chunks):
num_total = pipeline_parallel_size * num_chunks
num_items = len(weights)
if num_items <= num_total:
return _partition_uniform(num_items, pipeline_parallel_size, num_chunks)
return partition_uniform(num_items, pipeline_parallel_size, num_chunks)
intervals = _binary_search(weights, num_total)
@ -151,7 +151,7 @@ def _partition_balanced(weights, pipeline_parallel_size, num_chunks):
return parts
def _count_layer_params(layers):
def count_layer_params(layers):
"""Count the number of parameters in each layer
"""
param_counts = [0] * len(layers)
@ -201,11 +201,11 @@ def build_pipeline_model_from_cfg(config, num_chunks: int = 1, partition_method:
# Make a partition
if method == 'layer':
num_layers = len(layers)
parts = _partition_uniform(num_layers, pipeline_parallel_size, num_chunks)
parts = partition_uniform(num_layers, pipeline_parallel_size, num_chunks)
elif method == 'parameter':
param_counts = _count_layer_params(layers)
param_counts = count_layer_params(layers)
# print_rank_0(param_counts)
parts = _partition_balanced(param_counts, pipeline_parallel_size, num_chunks)
parts = partition_balanced(param_counts, pipeline_parallel_size, num_chunks)
else:
raise ValueError("Method should be a pre-set string in [layer, parameter]")
@ -250,7 +250,7 @@ def build_pipeline_model(layers: nn.Sequential, num_chunks: int = 1, verbose: bo
"""
pipeline_parallel_size = gpc.get_world_size(ParallelMode.PIPELINE)
pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
partitions = _partition_uniform(len(layers), pipeline_parallel_size, num_chunks)
partitions = partition_uniform(len(layers), pipeline_parallel_size, num_chunks)
module_list = []
for start, end in partitions[pipeline_rank]:
module_list.append(nn.Sequential(*layers[start:end]))

View File

@ -14,7 +14,8 @@ INITIALIZER_MAPPING = {
'2d': 'Initializer_2D',
'2.5d': 'Initializer_2p5D',
'3d': 'Initializer_3D',
'sequence': 'Initializer_Sequence'
'sequence': 'Initializer_Sequence',
'model': 'Initializer_Model'
}
# 1D parallel

View File

@ -394,6 +394,9 @@ class ParallelContext:
# LSG: init data parallel process group for compatibility with other parallel module such as zero
pg_init.append(dict(type=INITIALIZER_MAPPING['data']))
# LSG: init model parallel process group for compatibility with amp and clip grad
pg_init.append(dict(type=INITIALIZER_MAPPING['model']))
if self.pipeline_parallel_size > 1:
pg_init.append(dict(type=INITIALIZER_MAPPING['pipeline']))
pg_init.append(dict(type=INITIALIZER_MAPPING['tensor']))

View File

@ -14,10 +14,12 @@ class ParallelMode(Enum):
# common parallel
DATA = 'data'
# model parallel - containing tensor and pipeline parallel groups
# this is added to facilitate amp and grad clipping in hybrid parallel
MODEL = 'model'
# pipeline parallel
PIPELINE = 'pipe'
PIPELINE_PREV = 'pipe_prev'
PIPELINE_NEXT = 'pipe_next'
# containing all ranks in tensor parallel
TENSOR = 'tensor'

View File

@ -6,10 +6,11 @@ from .initializer_data import Initializer_Data
from .initializer_pipeline import Initializer_Pipeline
from .initializer_sequence import Initializer_Sequence
from .initializer_tensor import Initializer_Tensor
from .initializer_model import Initializer_Model
from .process_group_initializer import ProcessGroupInitializer
__all__ = [
'Initializer_Tensor', 'Initializer_Sequence', 'Initializer_Pipeline',
'Initializer_Data', 'Initializer_2p5D', 'Initializer_2D', 'Initializer_3D',
'Initializer_1D', 'ProcessGroupInitializer'
'Initializer_1D', 'ProcessGroupInitializer', 'Initializer_Model'
]

View File

@ -0,0 +1,43 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch.distributed as dist
from colossalai.context import Config
from colossalai.registry import DIST_GROUP_INITIALIZER
from .process_group_initializer import ProcessGroupInitializer
from ..parallel_mode import ParallelMode
@DIST_GROUP_INITIALIZER.register_module
class Initializer_Model(ProcessGroupInitializer):
'''A ProcessGroupInitializer for model parallelism (model parallel group contains pipeline and tensor parallel groups).
'''
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model_parallel_size = self.tensor_parallel_size * self.pipeline_parallel_size
self.num_group = self.world_size // self.model_parallel_size
def init_dist_group(self):
'''Initialize 1D tensor parallel groups, and assign local_ranks and groups to each gpu.
:return: (local_rank, group_world_size, process_group, ranks_in_group, mode)
:rtype: tuple
'''
local_rank = None
ranks_in_group = None
process_group = None
group_world_size = None
mode = ParallelMode.MODEL
for i in range(self.num_group):
ranks = [i * self.model_parallel_size + j for j in range(self.model_parallel_size)]
group = dist.new_group(ranks)
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
ranks_in_group = ranks
return local_rank, group_world_size, process_group, ranks_in_group, mode

View File

@ -36,28 +36,4 @@ class Initializer_Pipeline(ProcessGroupInitializer):
process_group, ranks_in_group,
ParallelMode.PIPELINE)))
for k in range(pipe_group_size):
first = pipe_ranks[k]
second = pipe_ranks[(k + 1) % pipe_group_size]
ranks = [first, second]
group = dist.new_group(ranks)
if self.rank == first:
local_rank = 0
group_world_size = 2
process_group = group
ranks_in_group = ranks
dist_settings.append(
tuple((local_rank, group_world_size,
process_group, ranks_in_group,
ParallelMode.PIPELINE_NEXT)))
elif self.rank == second:
local_rank = 1
group_world_size = 2
process_group = group
ranks_in_group = ranks
dist_settings.append(
tuple((local_rank, group_world_size,
process_group, ranks_in_group,
ParallelMode.PIPELINE_PREV)))
return dist_settings

View File

@ -2,15 +2,12 @@
# -*- encoding: utf-8 -*-
import torch
from typing import List
from torch.nn import Module
from torch.nn.modules.loss import _Loss
from torch.optim import Optimizer
from colossalai.builder import build_gradient_handler
from colossalai.logging import get_dist_logger
from colossalai.utils import is_using_ddp, is_using_pp
from torch import Tensor

View File

@ -1,5 +1,7 @@
from ._base_gradient_handler import BaseGradientHandler
from ._data_parallel_gradient_handler import DataParallelGradientHandler
from ._zero_gradient_handler import ZeROGradientHandler
from ._pipeline_parallel_gradient_handler import PipelineSharedModuleGradientHandler
__all__ = ['BaseGradientHandler', 'DataParallelGradientHandler', 'ZeROGradientHandler']
__all__ = ['BaseGradientHandler', 'DataParallelGradientHandler',
'ZeROGradientHandler', 'PipelineSharedModuleGradientHandler']

View File

@ -0,0 +1,41 @@
#!/usr/bin/env python
import torch.distributed as dist
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from colossalai.core import global_context as gpc
from colossalai.registry import GRADIENT_HANDLER
from ._base_gradient_handler import BaseGradientHandler
from collections import defaultdict
@GRADIENT_HANDLER.register_module
class PipelineSharedModuleGradientHandler(BaseGradientHandler):
"""A helper class to handle all-reduce operations in sub parallel groups.
A all-reduce collective communication will be operated in
:func:`handle_gradient` among all sub pipeline parallel groups.
For better performance, it bucketizes the gradients of all parameters that are
the same type to improve the efficiency of communication.
"""
def handle_gradient(self):
"""A method running a all-reduce operation in sub pipeline parallel groups.
"""
if gpc.pipeline_parallel_size > 1:
# bucketize and all-reduce
buckets = defaultdict(lambda: defaultdict(list))
# Pack the buckets.
for param in self._model.parameters():
group = getattr(param, 'pipeline_shared_module_pg', None)
if param.requires_grad and param.grad is not None and group is not None:
tp = param.data.type()
buckets[group][tp].append(param)
# For each bucket, all-reduce and copy all-reduced grads.
for group, group_buckets in buckets.items():
for tp, bucket in group_buckets.items():
grads = [param.grad.data for param in bucket]
coalesced = _flatten_dense_tensors(grads)
dist.all_reduce(coalesced, op=dist.ReduceOp.SUM, group=group)
for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
buf.copy_(synced)

View File

@ -5,8 +5,7 @@ from abc import ABC, abstractmethod
import torch
from torch import Tensor
from typing import Iterable, Union, List, Callable
from typing import Iterable, Callable
from .._base_engine import Engine
from colossalai.logging import get_dist_logger
from colossalai.utils import get_current_device
@ -32,18 +31,17 @@ class BaseSchedule(ABC):
return element
def _move_to_device(self, data):
if isinstance(data, (tuple, list)):
data = tuple([self._move_tensor(d) for d in data])
elif torch.is_tensor(data):
data = data.to(get_current_device()).detach()
if isinstance(data, dict):
data = {k: self._move_tensor(v) for k, v in data.items()}
else:
data = self._move_tensor(data)
return data
def _to_list(self, data):
if torch.is_tensor(data):
return [data]
return data
@staticmethod
def _check_sanity(data, tag):
assert isinstance(data, (torch.Tensor, dict)), f'{tag} must be torch.Tensor or dict'
def load_batch(self, data_iter):
def load_batch(self, data_iter, to_gpu=True):
"""Loads a batch from data iterator. It returns the data and labels which are
already in the same GPU as where the model's.
@ -58,13 +56,17 @@ class BaseSchedule(ABC):
data, label = self.batch_data_process_func(batch_data)
else:
data, label = batch_data
if isinstance(label, (tuple, list)):
self.batch_size = label[0].size(0)
self._check_sanity(data, 'data')
self._check_sanity(label, 'label')
if isinstance(data, torch.Tensor):
self.batch_size = data.size(0)
else:
self.batch_size = label.size(0)
data, label = self._to_list(split_batch(data)), self._to_list(split_batch(label))
self.batch_size = next(iter(data.values())).size(0)
data, label = split_batch(data), split_batch(label)
if to_gpu:
return self._move_to_device(data), self._move_to_device(label)
return data, label
def pre_processing(self, engine: Engine):
"""To perform actions before running the schedule.
@ -76,7 +78,8 @@ class BaseSchedule(ABC):
engine: Engine,
data_iter: Iterable,
forward_only: bool,
return_loss: bool = True
return_loss: bool = True,
return_output_label: bool = True
):
"""The process function over a batch of dataset for training or evaluation.
@ -85,5 +88,24 @@ class BaseSchedule(ABC):
:param labels: ground truth
:param forward_only: If True, the process won't include backward
:param return_loss: If False, the loss won't be returned
:param return_output_label: If False, the output and label won't be returned
"""
pass
@staticmethod
def _call_engine(engine, inputs):
if isinstance(inputs, torch.Tensor):
return engine(inputs)
else:
return engine(**inputs)
@staticmethod
def _call_engine_criterion(engine, outputs, labels):
assert isinstance(outputs, (torch.Tensor, list, tuple)
), f'Expect output of model is (torch.Tensor, list, tuple), got {type(outputs)}'
if isinstance(outputs, torch.Tensor):
outputs = (outputs, )
if isinstance(labels, torch.Tensor):
return engine.criterion(*outputs, labels)
else:
return engine.criterion(*outputs, **labels)

View File

@ -5,9 +5,7 @@ from typing import Iterable
import torch
import torch.nn as nn
from colossalai.engine import Engine
from torch.optim import Optimizer
from ._base_schedule import BaseSchedule
from colossalai.utils import conditional_context
@ -27,17 +25,20 @@ class NonPipelineSchedule(BaseSchedule):
engine: Engine,
data_iter: Iterable,
forward_only: bool = False,
return_loss: bool = True):
return_loss: bool = True,
return_output_label: bool = True):
"""The process function that loads loads a batch of dataset and feeds it to the model.
The returned labels and loss will None if :attr:`return_loss` is False.
:param engine: Model for training and inference
:param data_iter: Data iterator of the dataloader, e.g. iter(dataloader)
:param forward_only: If True, the model is run for the forward pass, else back propagation will be executed
:param return_loss: Loss will be returned if True
:param return_output_label: Output and label will be returned if True
:type engine: Iterator
:type data_iter: Iterator
:type forward_only: bool, optional
:type return_loss: bool, optional
:type return_output_label: bool, optional
:return: (output, label, loss)
:rtype: Tuple[:class:`torch.Tensor`]
@ -48,16 +49,20 @@ class NonPipelineSchedule(BaseSchedule):
# forward
with conditional_context(torch.no_grad(), enable=forward_only):
output = engine(*data)
if not isinstance(output, (tuple, list)):
output = (output,)
output = self._call_engine(engine, data)
if return_loss:
loss = engine.criterion(*output, *label)
loss = self._call_engine_criterion(engine, output, label)
if not forward_only:
engine.backward(loss)
if return_output_label:
if return_loss:
return output, label, loss
else:
return output, None, None
return output, label, None
else:
if return_loss:
return None, None, loss
else:
return None, None, None

View File

@ -1,19 +1,19 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from typing import Union
from typing import List, Tuple, Union, Callable
import inspect
import torch.cuda
import torch.distributed as dist
from torch import Tensor
from colossalai.communication import *
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.amp.naive_amp import NaiveAMPModel
from colossalai.utils.cuda import get_current_device
from colossalai.zero import (ZeroRedundancyOptimizer_Level_2,
ZeroRedundancyOptimizer_Level_3)
from colossalai.utils import get_current_device, switch_virtual_pipeline_parallel_rank
from colossalai.utils import switch_virtual_pipeline_parallel_rank
from ._base_schedule import BaseSchedule
@ -30,102 +30,79 @@ class PipelineSchedule(BaseSchedule):
:class:`NonPipelineSchedule`.
:param num_microbatches: The number of microbatches
:param amp_type: The type of automatic mixed precision
:param amp_config: The configuration of automatic mixed procision
:param sync_data: If set to `True`, will sync data every batch over pipeline stages
:type num_microbatches: int
:type amp_type: AMP_TYPE
:type amp_config: dict
:type sync_data: bool
:param batch_data_process_func: The preprocessing function which receives a batch of data, and it will be executed in `load_batch`
:type batch_data_process_func: Callable
"""
def __init__(self,
num_microbatches,
sync_data: bool = True):
super().__init__()
batch_data_process_func: Callable = None,
tensor_shape: Union[torch.Size, List[int], Tuple[int]] = None):
super().__init__(batch_data_process_func=batch_data_process_func)
self.num_microbatches = num_microbatches
self.sync_data = sync_data
self.dtype = torch.float
self.tensor_shape = tensor_shape
def _move_to_device(self, data):
if isinstance(data, (
tuple,
list,
)):
assert len(data) == 1, "Data tuple's length in pipeline should be 1"
data = data[0]
assert torch.is_tensor(data), "Data in pipeline should be tensor"
data = data.to(get_current_device()).detach()
return data
def _sync_data(self):
reqs = []
if gpc.is_first_rank(ParallelMode.PIPELINE):
src_rank = gpc.get_global_rank()
reqs.append(dist.broadcast(
tensor=self.batch_data,
src=src_rank,
group=gpc.get_group(ParallelMode.PIPELINE_PREV),
async_op=True
))
reqs.append(dist.broadcast(
tensor=self.batch_label,
src=src_rank,
group=gpc.get_group(ParallelMode.PIPELINE_PREV),
async_op=True
))
if gpc.is_last_rank(ParallelMode.PIPELINE):
src_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
reqs.append(dist.broadcast(
tensor=self.batch_data,
src=src_rank,
group=gpc.get_group(ParallelMode.PIPELINE_NEXT),
async_op=True
))
reqs.append(dist.broadcast(
tensor=self.batch_label,
src=src_rank,
group=gpc.get_group(ParallelMode.PIPELINE_NEXT),
async_op=True
))
for req in reqs:
req.wait()
# Pipeline schedule just puts data in memory
def load_batch(self, data_iter):
if data_iter is None:
raise RuntimeError('Dataloader is not defined.')
self.batch_pos = 0
data, label = next(data_iter)
self.batch_data, self.batch_label = \
self._move_to_device(data), self._move_to_device(label)
batch_size = self.batch_data.shape[0]
assert batch_size % self.num_microbatches == 0, \
# Pipeline schedule just puts data in memory
self.batch_data, self.batch_label = super().load_batch(data_iter, to_gpu=False)
self.microbatch_offset = 0
assert self.batch_size % self.num_microbatches == 0, \
"Batch size should divided by the number of microbatches"
self.microbatch_size = batch_size // self.num_microbatches
if self.sync_data:
self._sync_data()
self.microbatch_size = self.batch_size // self.num_microbatches
def _get_data_slice(self, tensor):
return tensor[self.batch_pos: self.batch_pos + self.microbatch_size]
def _get_data_slice(self, data, offset):
if isinstance(data, torch.Tensor):
return data[offset: offset + self.microbatch_size]
else:
return {k: v[offset:offset + self.microbatch_size] for k, v in data.items()}
def load_micro_batch(self):
data = self._get_data_slice(self.batch_data)
label = self._get_data_slice(self.batch_label)
self.batch_pos += self.microbatch_size
return (data,), (label,)
data = self._get_data_slice(self.batch_data, self.microbatch_offset)
label = self._get_data_slice(self.batch_label, self.microbatch_offset)
self.microbatch_offset += self.microbatch_size
return self._move_to_device(data), self._move_to_device(label)
def pre_processing(self, engine):
if isinstance(engine.optimizer, (ZeroRedundancyOptimizer_Level_2, ZeroRedundancyOptimizer_Level_3)):
raise TypeError(
"Pipeline schedule is currently not compatible with ZeRO Level 2 and Level 3"
)
if isinstance(engine.model, NaiveAMPModel):
model = engine.model
if isinstance(model, NaiveAMPModel):
self.dtype = torch.half
model = model.model
sig = inspect.signature(model.forward)
for p in sig.parameters.values():
assert p.kind != inspect.Parameter.VAR_POSITIONAL, '*args is not supported'
def forward_step(self, engine, input_tensor, return_tensors, return_loss=True):
@staticmethod
def _call_engine(model, input_tensor, batch_data):
if isinstance(model, NaiveAMPModel):
sig = inspect.signature(model.model.forward)
else:
sig = inspect.signature(model.forward)
if isinstance(batch_data, torch.Tensor):
if input_tensor is None:
return model(batch_data)
elif len(sig.parameters) > 1:
return model(input_tensor, batch_data)
else:
return model(input_tensor)
else:
filter_batch = True
for p in sig.parameters.values():
if p.kind == inspect.Parameter.VAR_KEYWORD:
filter_batch = False
if filter_batch:
batch_data = {k: v for k, v in batch_data.items() if k in sig.parameters}
if input_tensor is None:
return model(**batch_data)
else:
return model(input_tensor, **batch_data)
def forward_step(self, engine, input_tensor, return_tensors, return_output_label=True, accum_loss=None):
"""Forward step for passed-in model. If it is the first stage, the input tensor
is obtained from data_iterator, otherwise the passed-in input_tensor is used.
Returns output tensor. This is a helper function and can be ignored by users.
@ -140,26 +117,19 @@ class PipelineSchedule(BaseSchedule):
:return: output or the loss value of the current pipeline stage
:rtype: :class:`torch.Tensor`
"""
if input_tensor is None:
input_tensor, label = self.load_micro_batch()
input_tensor = squeeze(input_tensor)
output_tensor = engine(input_tensor)
data, label = self.load_micro_batch()
output_tensor = self._call_engine(engine.model, input_tensor, data)
output_tensor = squeeze(output_tensor)
if gpc.is_last_rank(ParallelMode.PIPELINE):
if return_loss:
input_tensor, label = self.load_micro_batch()
loss_reduced = engine.criterion(output_tensor, *label) \
/ self.num_microbatches
return_tensors.append(
tuple((output_tensor, label[0], loss_reduced)))
if return_output_label:
return_tensors.append(tuple((output_tensor, label)))
if accum_loss is not None:
loss_reduced = self._call_engine_criterion(engine, output_tensor, label) / self.num_microbatches
accum_loss.add_(loss_reduced.detach())
return loss_reduced
else:
return_tensors.append(output_tensor)
return output_tensor
else:
return output_tensor
@ -203,7 +173,8 @@ class PipelineSchedule(BaseSchedule):
engine,
data_iter,
forward_only=False,
return_loss=True):
return_loss=True,
return_output_label=True):
"""Runs non-interleaved 1F1B schedule, with communication between pipeline stages.
Returns a tuple with losses if the last stage, an empty tuple otherwise.
@ -215,6 +186,8 @@ class PipelineSchedule(BaseSchedule):
:type forward_only: bool
:param return_loss: whether returns the loss value. Default is true.
:type return_loss: bool
:param return_output_label: If False, the output and label won't be returned
:type return_output_label: bool
:return: (output, label, loss)
:rtype: Tuple[:class:`torch.Tensor`]
@ -238,11 +211,14 @@ class PipelineSchedule(BaseSchedule):
input_tensors = []
output_tensors = []
return_tensors = []
if return_loss and gpc.is_pipeline_last_stage(ignore_virtual=True):
accum_loss = torch.zeros(1, device=get_current_device())
else:
accum_loss = None
# Used for tensor meta information communication
ft_shape = None
ft_shape = self.tensor_shape
bt_shape = None
fs_checker = True
fs_checker = self.tensor_shape is None
# Run warmup forward passes.
for i in range(num_warmup_microbatches):
@ -251,7 +227,8 @@ class PipelineSchedule(BaseSchedule):
input_tensor = recv_forward(ft_shape, dtype=self.dtype)
output_tensor = self.forward_step(
engine, input_tensor, return_tensors,
return_loss=return_loss
return_output_label=return_output_label,
accum_loss=accum_loss
)
if not gpc.is_last_rank(ParallelMode.PIPELINE):
bt_shape = output_tensor.shape
@ -276,7 +253,8 @@ class PipelineSchedule(BaseSchedule):
output_tensor = self.forward_step(
engine, input_tensor, return_tensors,
return_loss=return_loss
return_output_label=return_output_label,
accum_loss=accum_loss
)
if forward_only:
send_forward(output_tensor)
@ -327,24 +305,37 @@ class PipelineSchedule(BaseSchedule):
send_backward(input_tensor_grad)
if len(return_tensors) > 0:
if return_loss:
output, label, loss = tuple(map(list, zip(*return_tensors)))
output, label = tuple(map(list, zip(*return_tensors)))
return (torch.cat(output, dim=0),
torch.cat(label, dim=0),
sum(loss))
accum_loss)
else:
return tuple((torch.cat(return_tensors, dim=0), None, None))
else:
return tuple((None, None, None))
return tuple((None, None, accum_loss))
class InterleavedPipelineSchedule(PipelineSchedule):
def __init__(self, num_microbatches, num_model_chunks, sync_data: bool = True):
def __init__(self,
num_microbatches,
num_model_chunks,
batch_data_process_func: Callable = None,
tensor_shape: Union[torch.Size, List[int], Tuple[int]] = None):
"""A helper schedule class for pipeline parallelism running environment.
It uses interleaved 1F1B strategy. Other properties are similar as
:class:`NonPipelineSchedule`.
:param num_microbatches: The number of microbatches
:type num_microbatches: int
:param num_model_chunks: The number of model chunks
:type num_model_chunks: int
:param batch_data_process_func: The preprocessing function which receives a batch of data, and it will be executed in `load_batch`
:type batch_data_process_func: Callable
"""
assert num_microbatches % gpc.get_world_size(ParallelMode.PIPELINE) == 0, \
'num_microbatches must be an integer multiple of pipeline parallel world size'
super().__init__(num_microbatches, sync_data=sync_data)
super().__init__(num_microbatches, batch_data_process_func=batch_data_process_func, tensor_shape=tensor_shape)
gpc.set_virtual_pipeline_parallel_size(num_model_chunks)
gpc.set_virtual_pipeline_parallel_rank(0)
self.num_model_chunks = num_model_chunks
def pre_processing(self, engine):
if isinstance(engine.optimizer, (ZeroRedundancyOptimizer_Level_2, ZeroRedundancyOptimizer_Level_3)):
@ -355,32 +346,46 @@ class InterleavedPipelineSchedule(PipelineSchedule):
if isinstance(engine.model[0], NaiveAMPModel):
self.dtype = torch.half
def forward_step(self, engine, model, input_tensor, return_tensors, return_loss=True):
for model in engine.model:
if isinstance(model, NaiveAMPModel):
model = model.model
sig = inspect.signature(model.forward)
for p in sig.parameters.values():
assert p.kind != inspect.Parameter.VAR_POSITIONAL, '*args is not supported'
def load_batch(self, data_iter):
super().load_batch(data_iter)
# overwrite microbatch_offset, since model chunks load the same microbatch, and should tract the offset
self.microbatch_offset = [0 for _ in range(self.num_model_chunks)]
def load_micro_batch(self, model_chunk_id):
data = self._get_data_slice(self.batch_data, self.microbatch_offset[model_chunk_id])
label = self._get_data_slice(self.batch_label, self.microbatch_offset[model_chunk_id])
self.microbatch_offset[model_chunk_id] += self.microbatch_size
return self._move_to_device(data), self._move_to_device(label)
def forward_step(self, engine, model_chunk_id, input_tensor, return_tensors, return_output_label=True, accum_loss=None):
"""Forward step for passed-in model. If it is the first stage, the input tensor
is obtained from data_iterator, otherwise the passed-in input_tensor is used.
Returns output tensor. This is a helper function and can be ignored by users.
"""
if input_tensor is None:
input_tensor, label = self.load_micro_batch()
input_tensor = squeeze(input_tensor)
output_tensor = model(input_tensor)
data, label = self.load_micro_batch(model_chunk_id)
output_tensor = self._call_engine(engine.model[model_chunk_id], input_tensor, data)
output_tensor = squeeze(output_tensor)
if gpc.is_pipeline_last_stage():
if return_loss:
input_tensor, label = self.load_micro_batch()
loss_reduced = engine.criterion(output_tensor, *label) / self.num_microbatches
return_tensors.append(
tuple((output_tensor, label[0], loss_reduced)))
if return_output_label:
return_tensors.append(tuple(output_tensor, label))
if accum_loss is not None:
loss_reduced = self._call_engine_criterion(engine, output_tensor, label) / self.num_microbatches
accum_loss.add_(loss_reduced.detach())
return loss_reduced
else:
return_tensors.append(output_tensor)
return output_tensor
else:
return output_tensor
def forward_backward_step(self, engine, data_iter, forward_only=False, return_loss=True):
def forward_backward_step(self, engine, data_iter, forward_only=False, return_loss=True, return_output_label=True):
"""Run interleaved 1F1B schedule (model split into model chunks), with
communication between pipeline stages as needed.
@ -394,11 +399,15 @@ class InterleavedPipelineSchedule(PipelineSchedule):
return_tensors = []
if not forward_only:
output_tensor_grads = [[] for _ in range(len(model))]
if return_loss and gpc.is_pipeline_last_stage(ignore_virtual=True):
accum_loss = torch.zeros(1, device=get_current_device())
else:
accum_loss = None
# Used for tensor meta information communication
input_tensor_shapes = [None for _ in range(len(model))]
input_tensor_shapes = [self.tensor_shape for _ in range(len(model))]
output_tensor_shapes = [None for _ in range(len(model))]
send_tensor_shape_flags = [True for _ in range(len(model))]
send_tensor_shape_flags = [self.tensor_shape is None for _ in range(len(model))]
pipeline_parallel_size = gpc.get_world_size(ParallelMode.PIPELINE)
pipeline_parallel_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
@ -450,8 +459,8 @@ class InterleavedPipelineSchedule(PipelineSchedule):
len(output_tensors[model_chunk_id]):
input_tensors[model_chunk_id].append(None)
input_tensor = input_tensors[model_chunk_id][-1]
output_tensor = self.forward_step(
engine, model[model_chunk_id], input_tensor, return_tensors, return_loss=return_loss)
output_tensor = self.forward_step(engine, model_chunk_id, input_tensor,
return_tensors, return_output_label=return_output_label, accum_loss=accum_loss)
output_tensors[model_chunk_id].append(output_tensor)
# if forward-only, no need to save tensors for a backward pass
@ -633,12 +642,9 @@ class InterleavedPipelineSchedule(PipelineSchedule):
dtype=self.dtype))
if len(return_tensors) > 0:
if return_loss:
output, label, loss = tuple(map(list, zip(*return_tensors)))
output, label = tuple(map(list, zip(*return_tensors)))
return (torch.cat(output, dim=0),
torch.cat(label, dim=0),
sum(loss))
accum_loss)
else:
return tuple((torch.cat(return_tensors, dim=0), None, None))
else:
return tuple((None, None, None))
return tuple((None, None, accum_loss))

View File

@ -338,6 +338,19 @@ def initialize(model: Union[nn.Module, List[nn.Module]],
"Data parallel training is detected when using pipeline parallel, DataParallelGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
# add pipeline parallel gradient handler, if pipeline shared module is detected
for param in model.parameters():
if getattr(param, 'pipeline_shared_module_pg', None) is not None:
if gradient_handler_cfg is None:
gradient_handler_cfg = [dict(type='PipelineSharedModuleGradientHandler')]
else:
gradient_handler_cfg.append(dict(type='PipelineSharedModuleGradientHandler'))
if verbose:
logger.info(
"pipeline_shared_module is detected, PipelineSharedModuleGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
break
else:
if not isinstance(gradient_handler_cfg, list):
raise ConfigException(

View File

@ -11,8 +11,8 @@ _parallel_split_batch = {'2d': split_tensor_2d, '2.5d': split_tensor_2p5d, '3d':
def split_batch(input_) -> Tensor:
tensor_parallel_mode = get_tensor_parallel_mode()
if tensor_parallel_mode in _parallel_split_batch:
if isinstance(input_, (tuple, list)):
return tuple(map(_parallel_split_batch[tensor_parallel_mode], input_))
if isinstance(input_, dict):
return {k: _parallel_split_batch[tensor_parallel_mode](v) for k, v in input_.items()}
else:
return _parallel_split_batch[tensor_parallel_mode](input_)
else:

View File

@ -1,3 +1,4 @@
from .lambda_wrapper import LambdaWrapper
from .pipeline_wrapper import PipelineSharedModuleWrapper
__all__ = ['LambdaWrapper']
__all__ = ['LambdaWrapper', 'PipelineSharedModuleWrapper']

View File

@ -0,0 +1,40 @@
import torch.nn as nn
import torch.distributed as dist
from typing import List, Tuple, Union
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
class PipelineSharedModuleWrapper:
def __init__(self, pipeline_ranks: Union[List[int], Tuple[int]]) -> None:
assert len(pipeline_ranks) > 1, f'Expect len(pipeline_ranks) > 1, got {len(pipeline_ranks)}'
self.pipeline_ranks = pipeline_ranks
self.group = None
self.ranks_in_group = None
self._init_group()
def _init_group(self):
world_size = gpc.get_world_size(ParallelMode.GLOBAL)
dp_size = gpc.get_world_size(ParallelMode.DATA)
pp_size = gpc.get_world_size(ParallelMode.PIPELINE)
rank = gpc.get_global_rank()
num_dp_groups = world_size // dp_size
num_pp_stages = num_dp_groups // pp_size
for i in range(dp_size):
for j in range(num_pp_stages):
pipeline_ranks = list(
range(i * num_dp_groups + j,
(i + 1) * num_dp_groups,
num_pp_stages))
sub_ranks = [pipeline_ranks[idx] for idx in self.pipeline_ranks]
group = dist.new_group(sub_ranks)
if rank in sub_ranks:
self.group = group
self.ranks_in_group = sub_ranks
def register_module(self, module: nn.Module):
assert self.ranks_in_group is not None, f'Rank {gpc.get_local_rank(ParallelMode.PIPELINE)} is not in pipeline_ranks {self.pipeline_ranks}'
src = self.ranks_in_group[self.pipeline_ranks[0]]
for p in module.parameters():
setattr(p, 'pipeline_shared_module_pg', self.group)
dist.broadcast(p, src, group=self.group)

View File

@ -155,7 +155,8 @@ class Trainer:
def _train_epoch(self,
train_dataloader: DataLoader,
epoch: int = None,
display_progress: bool = False):
display_progress: bool = False,
return_output_label: bool = True):
# set training state
self._engine.train()
data_iter = iter(train_dataloader)
@ -175,7 +176,7 @@ class Trainer:
# run 1 training step
self.engine.zero_grad()
logits, label, loss = self.schedule.forward_backward_step(
self.engine, data_iter, forward_only=False, return_loss=True)
self.engine, data_iter, forward_only=False, return_loss=True, return_output_label=return_output_label)
self.engine.step()
self._call_timer(action='stop', item='Train-step', keep_in_history=True)
self._call_hooks('after_train_iter', output=(logits, label, loss))
@ -197,7 +198,8 @@ class Trainer:
def _eval(self,
test_dataloader: DataLoader,
epoch: int = None,
display_progress: bool = False):
display_progress: bool = False,
return_output_label: bool = True):
# switch engine status
self._engine.eval()
@ -220,7 +222,7 @@ class Trainer:
self._call_hooks('before_test_iter')
self._call_timer(action='start', item='Test-step')
logits, label, loss = self.schedule.forward_backward_step(
self.engine, data_iter, forward_only=True, return_loss=True)
self.engine, data_iter, forward_only=True, return_loss=True, return_output_label=return_output_label)
self._call_timer(action='stop', item='Test-step', keep_in_history=True)
self._call_hooks('after_test_iter',
output=(logits, label, loss))
@ -246,6 +248,7 @@ class Trainer:
test_interval: int = 1,
hooks: List[BaseHook] = None,
display_progress: bool = False,
return_output_label: bool = True,
):
"""Trains the model to fit training data.
@ -256,6 +259,8 @@ class Trainer:
:param test_interval: Interval of testing
:param hooks_cfg: A list of hook configuration
:param display_progress: If True, the training progress will be printed
:param return_output_label: If True, the output of model and the label will be returned
:type return_output_label: bool
:type train_dataloader: DataLoader
:type epochs: int
:type max_steps: int
@ -307,7 +312,8 @@ class Trainer:
self._train_epoch(
train_dataloader=train_dataloader,
epoch=epoch,
display_progress=display_progress
display_progress=display_progress,
return_output_label=return_output_label
)
# start eval
@ -315,6 +321,7 @@ class Trainer:
self._eval(test_dataloader=test_dataloader,
display_progress=display_progress,
epoch=epoch,
return_output_label=return_output_label
)
self._cur_epoch += 1
@ -331,13 +338,16 @@ class Trainer:
def evaluate(self,
test_dataloader: DataLoader,
hooks: List[BaseHook] = None,
display_progress: bool = False):
display_progress: bool = False,
return_output_label: bool = True):
"""Evaluates the model with testing data.
:param test_dataloader: DataLoader in testing
:param display_progress: If True, the evaluation progress will be printed
:param return_output_label: If True, the output of model and the label will be returned
:type test_dataloader: DataLoader
:type display_progress: bool, optional
:type return_output_label: bool
"""
# set display
display_progress = self._should_display_progress(display_progress)
@ -360,6 +370,7 @@ class Trainer:
# eval
self._eval(test_dataloader=test_dataloader,
display_progress=display_progress,
return_output_label=return_output_label
)
def predict(self, data: Union[Tensor, List[Tensor]]):

View File

@ -155,22 +155,12 @@ def clip_grad_norm_fp32(parameters, max_norm, norm_type=2):
if norm_type == inf:
total_norm = max(p.grad.data.abs().max() for p in params)
total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
ops = []
# Take max across all model-parallel GPUs.
if gpc.is_initialized(ParallelMode.TENSOR) and gpc.get_world_size(ParallelMode.TENSOR) > 1:
ops.append(dist.all_reduce(total_norm_cuda,
if gpc.is_initialized(ParallelMode.MODEL) and gpc.get_world_size(ParallelMode.MODEL) > 1:
dist.all_reduce(total_norm_cuda,
op=dist.ReduceOp.MAX,
group=gpc.get_group(
ParallelMode.TENSOR),
async_op=True))
if gpc.is_initialized(ParallelMode.PIPELINE) and gpc.get_world_size(ParallelMode.PIPELINE) > 1:
ops.append(dist.all_reduce(total_norm_cuda,
op=dist.ReduceOp.MAX,
group=gpc.get_group(
ParallelMode.PIPELINE),
async_op=True))
for req in ops:
req.wait()
group=gpc.get_group(ParallelMode.MODEL),
async_op=False)
total_norm = total_norm_cuda[0].item()
else:
tensor_parallel_grads = []

View File

@ -65,6 +65,7 @@ class GradAccumOptimizer(ColossalaiOptimizer):
self.optim.backward(scaled_loss)
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
self.accumulate_step += 1
no_sync = self.is_torch_ddp and self.accumulate_step < self.accumulate_size
if no_sync:

View File

@ -26,8 +26,6 @@ follow the steps below to create a new distributed initialization.
GLOBAL = 'global'
DATA = 'data'
PIPELINE = 'pipe'
PIPELINE_PREV = 'pipe_prev'
PIPELINE_NEXT = 'pipe_next'
...
NEW_MODE = 'new_mode' # define your mode here

View File

@ -18,8 +18,6 @@ class ParallelMode(Enum):
GLOBAL = 'global'
DATA = 'data'
PIPELINE = 'pipe'
PIPELINE_PREV = 'pipe_prev'
PIPELINE_NEXT = 'pipe_next'
...
NEW_MODE = 'new_mode' # define your mode here

View File

@ -33,6 +33,12 @@ def check_pipeline_parallel_rank(rank):
assert gpc.get_local_rank(ParallelMode.PIPELINE) == 1
def check_model_parallel_rank(rank):
for i in range(8):
if rank in [i, i+8]:
assert gpc.get_local_rank(ParallelMode.MODEL) == i
def check_tensor_parallel_rank(rank):
if rank in [0, 4, 8, 12]:
assert gpc.get_local_rank(ParallelMode.TENSOR) == 0
@ -75,6 +81,7 @@ def init_2d(rank, world_size, backend, port, host):
check_data_parallel_rank(rank)
check_2d_parallel_rank(rank)
check_pipeline_parallel_rank(rank)
check_model_parallel_rank(rank)
gpc.destroy()
torch.cuda.empty_cache()

View File

@ -37,6 +37,12 @@ def check_pipeline_parallel_rank(rank):
assert ppr == 1
def check_model_parallel_rank(rank):
for i in range(16):
if rank in [i, i+16]:
assert gpc.get_local_rank(ParallelMode.MODEL) == i
def check_tensor_parallel_rank(rank):
tp_rank = gpc.get_local_rank(ParallelMode.TENSOR)
@ -98,6 +104,7 @@ def init_2halfd(rank, world_size, backend, port, host):
check_pipeline_parallel_rank(rank)
check_tensor_parallel_rank(rank)
check_2p5d_parallel_rank(rank)
check_model_parallel_rank(rank)
gpc.destroy()
torch.cuda.empty_cache()

View File

@ -37,6 +37,12 @@ def check_pipeline_parallel_rank(rank):
assert ppr == 1
def check_model_parallel_rank(rank):
for i in range(16):
if rank in [i, i+16]:
assert gpc.get_local_rank(ParallelMode.MODEL) == i
def check_tensor_parallel_rank(rank):
tp_rank = gpc.get_local_rank(ParallelMode.TENSOR)
@ -90,6 +96,7 @@ def init_3d(rank, world_size, backend, port, host):
check_3d_parallel_rank(rank)
check_data_parallel_rank(rank)
check_pipeline_parallel_rank(rank)
check_model_parallel_rank(rank)
gpc.destroy()
torch.cuda.empty_cache()

View File

@ -23,7 +23,7 @@ BATCH_SIZE = 16
NUM_EPOCHS = 60
WARMUP_EPOCHS = 5
CONFIG = dict(parallel=dict(pipeline=2, tensor=dict(size=2, mode='1d')),
fp16=dict(mode=AMP_TYPE.TORCH),
fp16=dict(mode=AMP_TYPE.NAIVE),
gradient_accumulation=2)

View File

@ -75,40 +75,7 @@ def check_forward_backward(output_tensor, output_grad, rank, logger):
rank, check_equal(grad, output_grad)))
def check_op(size, rank, prev_rank, next_rank, up_group, down_group, logger):
dtype = torch.float32
device = get_current_device()
tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
# recv_tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
grad_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
tensor = torch.randn(tensor_shape, dtype=dtype, device=device)
dist.all_reduce(tensor)
grad = torch.randn(grad_shape, dtype=dtype, device=device)
dist.all_reduce(grad)
if rank % 2 == 0:
need_meta = True
need_meta = send_tensor_meta(tensor, need_meta)
logger.info('Rank {} shape sent (need meta: {}).'.format(
rank, need_meta))
req = dist.broadcast(tensor, src=rank, group=down_group, async_op=True)
req.wait()
out = tensor.clone()
logger.info('Rank {} test op: tensor sent.'.format(rank))
else:
recv_tensor_shape = recv_tensor_meta(None)
logger.info('Rank {} shape received. Correct shape: {}'.format(
rank, tensor_shape == recv_tensor_shape))
out = torch.empty(recv_tensor_shape, dtype=dtype, device=device)
req = dist.broadcast(out, src=prev_rank, group=up_group, async_op=True)
req.wait()
logger.info('Rank {} test op: received tensor ({})'.format(
rank, out.shape))
logger.info('Rank {} test op. Correct tensor: {}'.format(
rank, check_equal(tensor, out)))
def check_comm(size, rank, prev_rank, next_rank, up_group, down_group, logger):
def check_comm(size, rank, prev_rank, next_rank, logger):
dtype = torch.float32
device = get_current_device()
tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
@ -117,7 +84,6 @@ def check_comm(size, rank, prev_rank, next_rank, up_group, down_group, logger):
dist.all_reduce(tensor)
grad = torch.randn(grad_shape, dtype=dtype, device=device)
dist.all_reduce(grad)
check_op(size, rank, prev_rank, next_rank, up_group, down_group, logger)
check_forward(tensor, rank, logger)
check_backward(grad, rank, logger)
check_forward_backward(tensor, grad, rank, logger)
@ -135,18 +101,13 @@ def run_check(rank, world_size, port):
logger = get_dist_logger()
rank = gpc.get_global_rank()
prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE)
up_ranks = gpc.get_ranks_in_group(ParallelMode.PIPELINE_PREV)
up_group = gpc.get_group(ParallelMode.PIPELINE_PREV)
next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
down_ranks = gpc.get_ranks_in_group(ParallelMode.PIPELINE_NEXT)
down_group = gpc.get_group(ParallelMode.PIPELINE_NEXT)
logger.info(
'Rank {0}: prev rank {1} (up: {2}), next rank {3} (down: {4})'.format(
rank, prev_rank, up_ranks, next_rank, down_ranks))
'Rank {0}: prev rank {1}, next rank {2}'.format(
rank, prev_rank, next_rank))
logger.info('Distributed environment is initialzied.')
check_comm(world_size, rank, prev_rank, next_rank, up_group, down_group,
logger)
check_comm(world_size, rank, prev_rank, next_rank, logger)
gpc.destroy()
torch.cuda.empty_cache()