mirror of https://github.com/hpcaitech/ColossalAI
[builder] use runtime builder for fused_optim (#2189)
parent
ce3c4eca7b
commit
9587b080ba
|
@ -65,11 +65,14 @@ class FusedAdam(torch.optim.Optimizer):
|
|||
self.adamw_mode = 1 if adamw_mode else 0
|
||||
self.set_grad_none = set_grad_none
|
||||
if multi_tensor_applier.available:
|
||||
import colossalai._C.fused_optim
|
||||
|
||||
try:
|
||||
from colossalai._C import fused_optim
|
||||
except:
|
||||
from colossalai.kernel.op_builder.fused_optim import FusedOptimBuilder
|
||||
fused_optim = FusedOptimBuilder().load()
|
||||
# Skip buffer
|
||||
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
|
||||
self.multi_tensor_adam = colossalai._C.fused_optim.multi_tensor_adam
|
||||
self.multi_tensor_adam = fused_optim.multi_tensor_adam
|
||||
else:
|
||||
raise RuntimeError('FusedAdam requires cuda extensions')
|
||||
|
||||
|
|
|
@ -76,13 +76,18 @@ class FusedLAMB(torch.optim.Optimizer):
|
|||
max_grad_norm=max_grad_norm)
|
||||
super(FusedLAMB, self).__init__(params, defaults)
|
||||
if multi_tensor_applier.available:
|
||||
import colossalai._C.fused_optim
|
||||
self.multi_tensor_l2norm = colossalai._C.fused_optim.multi_tensor_l2norm
|
||||
try:
|
||||
from colossalai._C import fused_optim
|
||||
except:
|
||||
from colossalai.kernel.op_builder.fused_optim import FusedOptimBuilder
|
||||
fused_optim = FusedOptimBuilder().load()
|
||||
|
||||
self.multi_tensor_l2norm = fused_optim.multi_tensor_l2norm
|
||||
# Skip buffer
|
||||
self._dummy_overflow_buf = torch.tensor([0],
|
||||
dtype=torch.int,
|
||||
device=self.param_groups[0]["params"][0].device)
|
||||
self.multi_tensor_lamb = colossalai._C.fused_optim.multi_tensor_lamb
|
||||
self.multi_tensor_lamb = fused_optim.multi_tensor_lamb
|
||||
else:
|
||||
raise RuntimeError('FusedLAMB requires cuda extensions')
|
||||
|
||||
|
|
|
@ -80,13 +80,16 @@ class FusedSGD(Optimizer):
|
|||
self.wd_after_momentum = wd_after_momentum
|
||||
|
||||
if multi_tensor_applier.available:
|
||||
import colossalai._C.fused_optim
|
||||
|
||||
try:
|
||||
from colossalai._C import fused_optim
|
||||
except:
|
||||
from colossalai.kernel.op_builder import FusedOptimBuilder
|
||||
fused_optim = FusedOptimBuilder().load()
|
||||
# Skip buffer
|
||||
self._dummy_overflow_buf = torch.tensor([0],
|
||||
dtype=torch.int,
|
||||
device=self.param_groups[0]["params"][0].device)
|
||||
self.multi_tensor_sgd = colossalai._C.fused_optim.multi_tensor_sgd
|
||||
self.multi_tensor_sgd = fused_optim.multi_tensor_sgd
|
||||
else:
|
||||
raise RuntimeError('FusedSGD requires cuda extensions')
|
||||
|
||||
|
|
|
@ -12,9 +12,10 @@ from torch._six import inf
|
|||
from torch.nn.parameter import Parameter
|
||||
|
||||
try:
|
||||
import colossalai._C.fused_optim
|
||||
from colossalai._C import fused_optim
|
||||
except:
|
||||
pass
|
||||
from colossalai.kernel.op_builder import FusedOptimBuilder
|
||||
fused_optim = FusedOptimBuilder().load()
|
||||
|
||||
from collections import defaultdict
|
||||
from contextlib import contextmanager
|
||||
|
@ -133,7 +134,7 @@ def _calc_l2_norm(grads):
|
|||
if len(grads) > 0:
|
||||
dummy_overflow_buf = torch.cuda.IntTensor([0])
|
||||
norm, _ = multi_tensor_applier(
|
||||
colossalai._C.fused_optim.multi_tensor_l2norm,
|
||||
fused_optim.multi_tensor_l2norm,
|
||||
dummy_overflow_buf,
|
||||
[grads],
|
||||
False # no per-parameter norm
|
||||
|
@ -270,8 +271,8 @@ def _clip_grad_norm(parameters, max_norm: float, total_norm: float) -> None:
|
|||
cpu_grads.append(p.grad.detach())
|
||||
if len(cuda_grads) > 0:
|
||||
dummy_overflow_buf = torch.cuda.IntTensor([0])
|
||||
multi_tensor_applier(colossalai._C.fused_optim.multi_tensor_scale, dummy_overflow_buf,
|
||||
[cuda_grads, cuda_grads], clip_coef)
|
||||
multi_tensor_applier(fused_optim.multi_tensor_scale, dummy_overflow_buf, [cuda_grads, cuda_grads],
|
||||
clip_coef)
|
||||
for g in cpu_grads:
|
||||
g.mul_(clip_coef)
|
||||
|
||||
|
@ -397,8 +398,7 @@ def clip_grad_norm_fp32(parameters, max_norm, norm_type=2):
|
|||
if enable_cuda_kernels:
|
||||
grads = [p.grad.detach() for p in params]
|
||||
dummy_overflow_buf = torch.cuda.IntTensor([0])
|
||||
multi_tensor_applier(colossalai._C.fused_optim.multi_tensor_scale, dummy_overflow_buf, [grads, grads],
|
||||
clip_coeff)
|
||||
multi_tensor_applier(fused_optim.multi_tensor_scale, dummy_overflow_buf, [grads, grads], clip_coeff)
|
||||
else:
|
||||
for p in params:
|
||||
p.grad.detach().mul_(clip_coeff)
|
||||
|
|
|
@ -49,9 +49,12 @@ def test_adam(adamw, step, p_dtype, g_dtype):
|
|||
try:
|
||||
import colossalai._C.fused_optim
|
||||
fused_adam = colossalai._C.fused_optim.multi_tensor_adam
|
||||
dummy_overflow_buf = torch.cuda.IntTensor([0])
|
||||
except:
|
||||
raise ImportError("No colossalai._C.fused_optim kernel installed.")
|
||||
from colossalai.kernel.op_builder import FusedOptimBuilder
|
||||
fused_optim = FusedOptimBuilder().load()
|
||||
fused_adam = fused_optim.multi_tensor_adam
|
||||
|
||||
dummy_overflow_buf = torch.cuda.IntTensor([0])
|
||||
|
||||
count = 0
|
||||
|
||||
|
|
Loading…
Reference in New Issue