|
|
|
@ -69,7 +69,7 @@ class IndexTracer(object):
|
|
|
|
|
self.node_list = node_list |
|
|
|
|
self.idx_trace_list = self._init_idx_trace_list() |
|
|
|
|
self.idx_trace_equal = [] |
|
|
|
|
self.idx_view_list = [] |
|
|
|
|
self.idx_view_list = {} |
|
|
|
|
self.idx_count = -1 |
|
|
|
|
self.all_reorder_map = {i: i for i in range(len(self.idx_trace_list))} |
|
|
|
|
|
|
|
|
@ -576,7 +576,7 @@ class IndexTracer(object):
|
|
|
|
|
"idx_to": [self.idx_trace_list[node_idx]["idx"][i] for i in dim_to], |
|
|
|
|
"dim_to": dim_to, |
|
|
|
|
} |
|
|
|
|
self.idx_view_list.append(view_dict) |
|
|
|
|
self.idx_view_list[node] = view_dict |
|
|
|
|
|
|
|
|
|
def _merge_equal_idx(self): |
|
|
|
|
idx_equal = copy.deepcopy(self.idx_trace_equal) |
|
|
|
@ -702,7 +702,7 @@ class IndexTracer(object):
|
|
|
|
|
for node_dim in range(len(_get_node_shape(node))): |
|
|
|
|
if ( |
|
|
|
|
input_node_idx in node_trace_source[node_dim] |
|
|
|
|
and input_dim in node_trace_source[node_dim][input_node_idx] |
|
|
|
|
and input_dim[0] in node_trace_source[node_dim][input_node_idx] |
|
|
|
|
): |
|
|
|
|
return node_dim |
|
|
|
|
return None |
|
|
|
@ -875,6 +875,7 @@ class IndexTracer(object):
|
|
|
|
|
remove_inputs = [] |
|
|
|
|
for input_node in inputs: |
|
|
|
|
input_dict = {} |
|
|
|
|
input_node_idx = _find_idx_by_name(input_node.name, self.node_list) |
|
|
|
|
for user in input_node.users.keys(): |
|
|
|
|
if _is_non_compute_node(user): |
|
|
|
|
continue |
|
|
|
@ -882,7 +883,11 @@ class IndexTracer(object):
|
|
|
|
|
if start_idx <= user_idx <= end_idx: |
|
|
|
|
chunk_dim = all_node_info[user]["chunk_dim"] |
|
|
|
|
if chunk_dim is not None: |
|
|
|
|
input_dict[user_idx] = chunk_dim |
|
|
|
|
user_source = self._find_source_trace_from_node(user)[chunk_dim] |
|
|
|
|
if input_node_idx in user_source: |
|
|
|
|
input_dict[user_idx] = user_source[input_node_idx] |
|
|
|
|
else: |
|
|
|
|
return None |
|
|
|
|
if len(input_dict) == 0: |
|
|
|
|
remove_inputs.append(input_node) |
|
|
|
|
else: |
|
|
|
@ -898,6 +903,7 @@ class IndexTracer(object):
|
|
|
|
|
"inputs_dim": inputs_dim, |
|
|
|
|
"outputs": outputs, |
|
|
|
|
"outputs_dim": end_dim, |
|
|
|
|
"node_chunk_dim": all_node_info, |
|
|
|
|
"args": {}, |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -974,6 +980,26 @@ class IndexTracer(object):
|
|
|
|
|
if i not in chunk_info["inputs"]: |
|
|
|
|
chunk_info["inputs_non_chunk"].append(i) |
|
|
|
|
|
|
|
|
|
# reassgin reshape size, some size may have changed due to chunk |
|
|
|
|
chunk_info = self._reassgin_reshape_size(chunk_info) |
|
|
|
|
|
|
|
|
|
return chunk_info |
|
|
|
|
|
|
|
|
|
def _reassgin_reshape_size(self, chunk_info): |
|
|
|
|
chunk_region = chunk_info['region'] |
|
|
|
|
reshape_size = {} |
|
|
|
|
for node in self.node_list[chunk_region[0]: chunk_region[1] + 1]: |
|
|
|
|
if any(i in node.name for i in ['reshape', 'view']): |
|
|
|
|
reshape_args = node.args[1:] |
|
|
|
|
reshape_log = self.idx_view_list[node] |
|
|
|
|
chunk_dim = chunk_info['node_chunk_dim'][node]['chunk_dim'] |
|
|
|
|
reshape_size[node.name] = {} |
|
|
|
|
for reshape_arg_dim, reshape_arg in enumerate(reshape_args): |
|
|
|
|
if reshape_arg_dim in reshape_log['dim_to']: |
|
|
|
|
continue |
|
|
|
|
if reshape_arg_dim == chunk_dim: |
|
|
|
|
reshape_size[node.name][reshape_arg.name] = "chunk_size" |
|
|
|
|
chunk_info['reshape_size'] = reshape_size |
|
|
|
|
return chunk_info |
|
|
|
|
|
|
|
|
|
def _get_reorder_map(self, chunk_info): |
|
|
|
@ -1183,23 +1209,15 @@ class MemoryEstimator(object):
|
|
|
|
|
not_contiguous_list.append(node) |
|
|
|
|
return mem |
|
|
|
|
|
|
|
|
|
def _get_chunk_ratio(self, node, chunk_inputs, chunk_inputs_dim, chunk_size): |
|
|
|
|
def _get_chunk_ratio(self, node, chunk_node_dim, chunk_size): |
|
|
|
|
if node not in chunk_node_dim: |
|
|
|
|
return 1.0 |
|
|
|
|
node_shape = _get_node_shape(node) |
|
|
|
|
node_source = self.index_tracer._find_source_trace_from_node(node) |
|
|
|
|
for (input_node, input_node_dim) in zip(chunk_inputs, chunk_inputs_dim): |
|
|
|
|
for k, v in input_node_dim.items(): |
|
|
|
|
# TODO: inherit dim should be list too, int now |
|
|
|
|
inherit_dim = self.index_tracer._find_inherit_dim( |
|
|
|
|
input_node, v, self.index_tracer.node_list[k] |
|
|
|
|
) |
|
|
|
|
if k == _find_idx_by_name(node.name, self.index_tracer.node_list): |
|
|
|
|
chunk_ratio = float(chunk_size) / node_shape[inherit_dim] |
|
|
|
|
return chunk_ratio |
|
|
|
|
for dim, source in enumerate(node_source): |
|
|
|
|
if k in source and inherit_dim in source[k]: |
|
|
|
|
chunk_ratio = float(chunk_size) / node_shape[dim] |
|
|
|
|
return chunk_ratio |
|
|
|
|
return 1.0 |
|
|
|
|
chunk_dim = chunk_node_dim[node]['chunk_dim'] |
|
|
|
|
if chunk_dim is None: |
|
|
|
|
return 1.0 |
|
|
|
|
else: |
|
|
|
|
return float(chunk_size) / node_shape[chunk_dim] |
|
|
|
|
|
|
|
|
|
def _get_chunk_delete_node_size( |
|
|
|
|
self, user, user_to_last_uses, chunk_ratio, chunk_inputs_names |
|
|
|
@ -1242,6 +1260,7 @@ class MemoryEstimator(object):
|
|
|
|
|
self, |
|
|
|
|
node_list, |
|
|
|
|
chunk_infos=None, |
|
|
|
|
print_mem=False, |
|
|
|
|
): |
|
|
|
|
act_memory = 0.0 |
|
|
|
|
act_memory_peak_log = [] |
|
|
|
@ -1271,6 +1290,7 @@ class MemoryEstimator(object):
|
|
|
|
|
j.name for i in chunk_inputs_non_chunk for j in i |
|
|
|
|
] |
|
|
|
|
chunk_outputs = [i["outputs"][0] for i in chunk_infos] |
|
|
|
|
chunk_node_dim = [i["node_chunk_dim"] for i in chunk_infos] |
|
|
|
|
|
|
|
|
|
for idx, node in enumerate(node_list): |
|
|
|
|
# if node in chunk start nodes, change chunk ratio and add chunk_tensor |
|
|
|
@ -1285,8 +1305,7 @@ class MemoryEstimator(object):
|
|
|
|
|
if chunk_within: |
|
|
|
|
chunk_ratio = self._get_chunk_ratio( |
|
|
|
|
node, |
|
|
|
|
chunk_inputs[chunk_region_idx], |
|
|
|
|
chunk_inputs_dim[chunk_region_idx], |
|
|
|
|
chunk_node_dim[chunk_region_idx], |
|
|
|
|
chunk_size, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
@ -1357,11 +1376,12 @@ class MemoryEstimator(object):
|
|
|
|
|
act_memory_after_node_log.append(act_memory) |
|
|
|
|
active_node_list_log.append(copy.deepcopy(active_node_list)) |
|
|
|
|
|
|
|
|
|
print("with chunk" if use_chunk else "without chunk") |
|
|
|
|
# self._print_mem_log(act_memory_peak_log, node_list, "peak") |
|
|
|
|
# self._print_mem_log(act_memory_after_node_log, node_list, "after") |
|
|
|
|
self._print_compute_op_mem_log(act_memory_peak_log, node_list, "peak") |
|
|
|
|
self._print_compute_op_mem_log(act_memory_after_node_log, node_list, "after") |
|
|
|
|
if print_mem: |
|
|
|
|
print("with chunk" if use_chunk else "without chunk") |
|
|
|
|
# self._print_mem_log(act_memory_peak_log, node_list, "peak") |
|
|
|
|
# self._print_mem_log(act_memory_after_node_log, node_list, "after") |
|
|
|
|
self._print_compute_op_mem_log(act_memory_peak_log, node_list, "peak") |
|
|
|
|
self._print_compute_op_mem_log(act_memory_after_node_log, node_list, "after") |
|
|
|
|
|
|
|
|
|
# param_memory = parameter_size(gm) |
|
|
|
|
# all_memory = act_memory + param_memory |
|
|
|
@ -1369,21 +1389,70 @@ class MemoryEstimator(object):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ChunkSelector(object): |
|
|
|
|
def __init__(self, index_tracer: IndexTracer, stratge) -> None: |
|
|
|
|
def __init__(self, index_tracer: IndexTracer, memory_estimator: MemoryEstimator, stratge): |
|
|
|
|
self.index_tracer = index_tracer |
|
|
|
|
self.memory_estimator = memory_estimator |
|
|
|
|
assert stratge in ['min_memory', 'fit_memory'] |
|
|
|
|
self.stratge = stratge |
|
|
|
|
self.max_memory = 800 # MB |
|
|
|
|
self.max_memory = 600 # MB |
|
|
|
|
|
|
|
|
|
def _select_best_chunk_region(self, possible_chunk_regions, chunk_infos): |
|
|
|
|
def _select_best_chunk_region(self, possible_chunk_regions, |
|
|
|
|
chunk_infos, peak_node, max_chunk_region, mem_peak): |
|
|
|
|
if self.stratge == 'min_memory': |
|
|
|
|
best_region = self._select_min_memory_chunk_region(possible_chunk_regions, chunk_infos) |
|
|
|
|
elif self.stratge == 'fit_memory': |
|
|
|
|
pass |
|
|
|
|
best_region = self._select_fit_memory_chunk_region( |
|
|
|
|
possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak) |
|
|
|
|
else: |
|
|
|
|
raise RuntimeError() |
|
|
|
|
return best_region |
|
|
|
|
|
|
|
|
|
def _select_fit_memory_chunk_region(self, possible_chunk_regions, |
|
|
|
|
chunk_infos, peak_node, max_chunk_region, mem_peak): |
|
|
|
|
# stop chunk if max memory satisfy memory limit |
|
|
|
|
if max(mem_peak) < self.max_memory: |
|
|
|
|
return None |
|
|
|
|
|
|
|
|
|
# remove illegal regions |
|
|
|
|
illegal_regions = [] |
|
|
|
|
for i in possible_chunk_regions: |
|
|
|
|
if not self._is_legal_region(i, chunk_infos): |
|
|
|
|
illegal_regions.append(i) |
|
|
|
|
for i in illegal_regions: |
|
|
|
|
if i in possible_chunk_regions: |
|
|
|
|
possible_chunk_regions.remove(i) |
|
|
|
|
|
|
|
|
|
# get mem for chunk region |
|
|
|
|
regions_dict = [] |
|
|
|
|
for region in possible_chunk_regions: |
|
|
|
|
cur_chunk_infos = chunk_infos + [region] |
|
|
|
|
cur_mem_peak = self.memory_estimator.estimate_chunk_inference_mem( |
|
|
|
|
self.index_tracer.node_list, cur_chunk_infos)[0] |
|
|
|
|
cur_chunk_region_peak = cur_mem_peak[max_chunk_region[0]: max_chunk_region[1] + 1] |
|
|
|
|
cur_chunk_region_max_peak = max(cur_chunk_region_peak) |
|
|
|
|
if cur_chunk_region_max_peak < self.max_memory: |
|
|
|
|
regions_dict.append({ |
|
|
|
|
"chunk_info": region, |
|
|
|
|
"chunk_max_mem": cur_chunk_region_max_peak, |
|
|
|
|
"chunk_len": self._get_compute_node_num(region['region'][0], region['region'][1]), |
|
|
|
|
}) |
|
|
|
|
# no region found |
|
|
|
|
if len(regions_dict) == 0: |
|
|
|
|
return None |
|
|
|
|
|
|
|
|
|
# select the min chunk len |
|
|
|
|
chunk_len = [i["chunk_len"] for i in regions_dict] |
|
|
|
|
best_region_idx = chunk_len.index(min(chunk_len)) |
|
|
|
|
best_region = regions_dict[best_region_idx]["chunk_info"] |
|
|
|
|
return best_region |
|
|
|
|
|
|
|
|
|
def _get_compute_node_num(self, start, end): |
|
|
|
|
count = 0 |
|
|
|
|
for i in self.index_tracer.node_list[start: end+1]: |
|
|
|
|
if _is_non_compute_node(i): |
|
|
|
|
count += 1 |
|
|
|
|
return count |
|
|
|
|
|
|
|
|
|
def _select_min_memory_chunk_region(self, possible_chunk_regions, chunk_infos): |
|
|
|
|
max_region_range = 0 |
|
|
|
|
best_region = None |
|
|
|
@ -1421,7 +1490,7 @@ class ChunkRegionSearch(object):
|
|
|
|
|
self.index_tracer = IndexTracer(list(gm.graph.nodes)) |
|
|
|
|
self.index_tracer.trace_index() |
|
|
|
|
self.memory_estimator = MemoryEstimator(self.index_tracer) |
|
|
|
|
self.chunk_selector = ChunkSelector(self.index_tracer, stratge="min_memory") |
|
|
|
|
self.chunk_selector = ChunkSelector(self.index_tracer, self.memory_estimator, stratge="fit_memory") |
|
|
|
|
|
|
|
|
|
def _find_peak_node(self, mem_peak): |
|
|
|
|
max_value = max(mem_peak) |
|
|
|
@ -1575,7 +1644,7 @@ class ChunkRegionSearch(object):
|
|
|
|
|
max_chunk_region, peak_node |
|
|
|
|
) |
|
|
|
|
best_chunk_region = self.chunk_selector._select_best_chunk_region( |
|
|
|
|
possible_chunk_regions, chunk_regions |
|
|
|
|
possible_chunk_regions, chunk_regions, peak_node, max_chunk_region, mem_peak |
|
|
|
|
) |
|
|
|
|
best_chunk_region = self.index_tracer.reorder_all(best_chunk_region) |
|
|
|
|
return best_chunk_region |
|
|
|
@ -1608,7 +1677,7 @@ class ChunkRegionSearch(object):
|
|
|
|
|
_, |
|
|
|
|
active_node, |
|
|
|
|
) = self.memory_estimator.estimate_chunk_inference_mem( |
|
|
|
|
self.index_tracer.node_list, chunk_infos |
|
|
|
|
self.index_tracer.node_list, chunk_infos, print_mem=True |
|
|
|
|
) |
|
|
|
|
if self._stop_search(init_mem_peak, mem_peak): |
|
|
|
|
break |
|
|
|
@ -1736,6 +1805,13 @@ def _replace_name(context, name_from, name_to):
|
|
|
|
|
return context |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _replace_reshape_size(context, node_name, reshape_size_dict): |
|
|
|
|
if node_name not in reshape_size_dict: |
|
|
|
|
return context |
|
|
|
|
for size_name, size_value in reshape_size_dict[node_name].items(): |
|
|
|
|
context = context.replace(size_name, size_value) |
|
|
|
|
return context |
|
|
|
|
|
|
|
|
|
def emit_code_with_chunk( |
|
|
|
|
body, |
|
|
|
|
ckpt_func, |
|
|
|
@ -1802,11 +1878,12 @@ def emit_code_with_chunk(
|
|
|
|
|
for idx, dim in chunk_inputs_dim[region_idx][input_node_idx].items(): |
|
|
|
|
if idx == node_idx: |
|
|
|
|
chunk_slice = _gen_chunk_slice_dim( |
|
|
|
|
dim, "chunk_idx", _get_node_shape(input_node) |
|
|
|
|
dim[0], "chunk_idx", _get_node_shape(input_node) |
|
|
|
|
) |
|
|
|
|
body[-1] = _replace_name( |
|
|
|
|
body[-1], input_node.name, input_node.name + chunk_slice |
|
|
|
|
) |
|
|
|
|
body[-1] = _replace_reshape_size(body[-1], node.name, chunk_search[region_idx]['reshape_size']) |
|
|
|
|
body[-1] = " " + body[-1] |
|
|
|
|
delete_unused_value_func(node, body, chunk_inputs_names) |
|
|
|
|
else: |
|
|
|
|