[fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;

pull/6034/head
duanjunwen 2024-08-30 05:42:43 +00:00
parent 6af81d8c0d
commit 8eb6eac225
3 changed files with 63 additions and 68 deletions

View File

@ -58,14 +58,17 @@ class OptimizerWrapper:
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
torch.autograd.backward(tensor, grad)
def backward_b_by_grad(self, tensors: Tensor, grad_tensors: Tensor, inputs: Tensor, retain_graph: bool = True):
def backward_b_w_by_grad(self, tensors: Tensor, grad_tensors: Tensor, inputs: Tensor, retain_graph: bool = True):
"""
Performs a backward pass for dx, we only calculate dx = w*dy here
Performs a backward pass for dx or dw,
for dx, we only calculate dx = w*dy here
for dw, we only calculate dw = x*dy here
Args:
tensor (Tensor): y or loss of current chunk;
grad_tensors (Tensor): dy of current chunk;
input_obj (Tensor): x of current chunk;
input_obj (Tensor): for dx, input_obj is x of current chunk;
for dw, input_obj is w of current chunk;
retain_graph (bool): default to be True, we retain graph in backward_b
"""
torch.autograd.backward(
@ -75,23 +78,6 @@ class OptimizerWrapper:
retain_graph=retain_graph,
)
def backward_w_by_grad(self, tensors: Tensor, grad_tensors: Tensor, inputs: Tensor, retain_graph: bool = False):
"""
Performs a backward pass for dw, we only calculate dw = x*dy here
Args:
tensor (Tensor): y or loss of current chunk;
grad_tensors (Tensor): dy of current chunk;
input_obj (Tensor): w;
retain_graph (bool): default to be False, we release graph in backward_w
"""
torch.autograd.backward(
tensors=tensors,
grad_tensors=grad_tensors,
inputs=inputs,
retain_graph=retain_graph,
)
def state_dict(self):
"""
Returns the optimizer state.

View File

@ -1,6 +1,32 @@
# Refer from Zero Bubble Pipeline Parallelism.
# Github: https://github.com/sail-sg/zero-bubble-pipeline-parallelism
# Paper: https://arxiv.org/abs/2401.10241
# The following applies to all files unless otherwise noted:
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from collections import deque
from dataclasses import dataclass

View File

@ -46,13 +46,9 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
self.last_batch_size: Optional[int] = None
self.microbatch_offset: List[int]
self.collect_non_loss_data = None
self.forward_only = None
self.schedules = schedule
# TODO: optim post valid
self.do_post_validation = False
# self.is_first_run = True
# self.optimizer = None
# P2PMeta cache
# self.enable_metadata_cache = enable_metadata_cache
@ -166,6 +162,14 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
model_chunk_id = self.num_model_chunks - model_chunk_id - 1
return model_chunk_id
def communication_func_map(self, node_type: str):
return {
"SEND_FORWARD": self.send_forward,
"RECV_FORWARD": self.recv_forward,
"SEND_BACKWARD": self.send_backward,
"RECV_BACKWARD": self.recv_backward,
}[node_type]
def recv_forward(self, model_chunk_id: int, prev_rank: int = None) -> Tuple[Any, List]:
"""Copy the forward output from the previous stage in pipeline as the input tensor of this stage.
For ZBV.
@ -439,10 +443,7 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
if model_chunk_id == 0:
# bwd step
# torch.autograd.backward(
# tensors=output_obj, grad_tensors=output_obj_grad, inputs=input_obj, retain_graph=True
# )
optimizer.backward_b_by_grad(
optimizer.backward_b_w_by_grad(
tensors=output_obj,
grad_tensors=output_obj_grad,
inputs=input_obj,
@ -451,8 +452,7 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
else:
if self.stage_manager.is_first_stage(ignore_chunk=True):
# loss backward; output_obj is loss
# torch.autograd.backward(tensors=output_obj, grad_tensors=None, inputs=input_obj, retain_graph=True)
optimizer.backward_b_by_grad(
optimizer.backward_b_w_by_grad(
tensors=output_obj,
grad_tensors=None,
inputs=input_obj,
@ -461,10 +461,7 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
else:
# commom bwd step
# torch.autograd.backward(
# tensors=output_obj, grad_tensors=output_obj_grad, inputs=input_obj, retain_graph=True
# )
optimizer.backward_b_by_grad(
optimizer.backward_b_w_by_grad(
tensors=output_obj,
grad_tensors=output_obj_grad,
inputs=input_obj,
@ -495,30 +492,27 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
"""
# calculate bwd w step ; only dw = x*dy;
if model_chunk_id == 0:
# torch.autograd.backward(
# tensors=output_obj, grad_tensors=output_obj_grad, inputs=list(model_chunk[model_chunk_id].parameters())
# )
optimizer.backward_w_by_grad(
tensors=output_obj, grad_tensors=output_obj_grad, inputs=list(model_chunk[model_chunk_id].parameters())
optimizer.backward_b_w_by_grad(
tensors=output_obj,
grad_tensors=output_obj_grad,
inputs=list(model_chunk[model_chunk_id].parameters()),
retain_graph=False,
)
else:
if self.stage_manager.is_first_stage(ignore_chunk=True):
# torch.autograd.backward(tensors=output_obj_grad, grad_tensors=None, inputs=list(model_chunk[model_chunk_id].parameters()))
optimizer.backward_w_by_grad(
tensors=output_obj, grad_tensors=None, inputs=list(model_chunk[model_chunk_id].parameters())
optimizer.backward_b_w_by_grad(
tensors=output_obj,
grad_tensors=None,
inputs=list(model_chunk[model_chunk_id].parameters()),
retain_graph=False,
)
else:
# torch.autograd.backward(
# tensors=output_obj,
# grad_tensors=output_obj_grad,
# inputs=list(model_chunk[model_chunk_id].parameters()),
# )
optimizer.backward_w_by_grad(
optimizer.backward_b_w_by_grad(
tensors=output_obj,
grad_tensors=output_obj_grad,
inputs=list(model_chunk[model_chunk_id].parameters()),
retain_graph=False,
)
def schedule_f(
@ -718,17 +712,14 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
outputs = [] if return_outputs and self.stage_manager.is_first_stage(ignore_chunk=True) else None
it = 0
# while we still have schedules_node in self.schedules
while it < len(self.schedules):
for it in range(len(self.schedules)):
scheduled_node = self.schedules[it]
if scheduled_node.type in AUTO_SCHEDULE_COMMUNICATION_TYPES:
if scheduled_node.type in {"RECV_FORWARD", "SEND_FORWARD"}:
# communication
if scheduled_node.type == "RECV_FORWARD":
self.recv_forward(scheduled_node.chunk)
elif scheduled_node.type == "SEND_FORWARD":
self.send_forward(scheduled_node.chunk)
communication_func = self.communication_func_map(scheduled_node.type)
communication_func(scheduled_node.chunk)
if scheduled_node.type == "F":
self.schedule_f(
scheduled_node=scheduled_node,
@ -738,7 +729,6 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
accum_loss=accum_loss,
outputs=outputs,
)
it += 1
# return loss & output
if outputs is not None:
outputs = merge_batch(outputs)
@ -771,9 +761,8 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
outputs = [] if return_outputs and self.stage_manager.is_first_stage(ignore_chunk=True) else None
it = 0
# while we still have schedules_node in self.schedules
while it < len(self.schedules):
for it in range(len(self.schedules)):
scheduled_node = self.schedules[it]
print(
@ -781,14 +770,9 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
)
if scheduled_node.type in AUTO_SCHEDULE_COMMUNICATION_TYPES:
# communication
if scheduled_node.type == "RECV_FORWARD":
self.recv_forward(scheduled_node.chunk)
elif scheduled_node.type == "RECV_BACKWARD":
self.recv_backward(scheduled_node.chunk)
elif scheduled_node.type == "SEND_FORWARD":
self.send_forward(scheduled_node.chunk)
elif scheduled_node.type == "SEND_BACKWARD":
self.send_backward(scheduled_node.chunk)
communication_func = self.communication_func_map(scheduled_node.type)
communication_func(scheduled_node.chunk)
if scheduled_node.type == "F":
self.schedule_f(
scheduled_node=scheduled_node,
@ -812,7 +796,6 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
model_chunk_id=scheduled_node.chunk,
optimizer=optimizer,
)
it += 1
# return loss & output
if outputs is not None: