mirror of https://github.com/hpcaitech/ColossalAI
[Inference] Benchmarking rotary embedding and add a fetch function (#5277)
* fix bugs and add a cos/sin cache fetch func * add docstring * fix bug * fixpull/5306/head
parent
b7853196a0
commit
8e606ecc7e
|
@ -1,9 +1,20 @@
|
||||||
import pytest
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
|
from packaging import version
|
||||||
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
|
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
|
||||||
|
|
||||||
from colossalai.kernel.triton import rotary_embedding
|
from colossalai.kernel.triton import rotary_embedding
|
||||||
|
|
||||||
|
try:
|
||||||
|
import triton # noqa
|
||||||
|
|
||||||
|
HAS_TRITON = True
|
||||||
|
except ImportError:
|
||||||
|
HAS_TRITON = False
|
||||||
|
print("please install triton from https://github.com/openai/triton")
|
||||||
|
|
||||||
|
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
|
||||||
|
|
||||||
|
|
||||||
def torch_rotary_emb(x, cos, sin):
|
def torch_rotary_emb(x, cos, sin):
|
||||||
seq_len, h, dim = x.shape
|
seq_len, h, dim = x.shape
|
||||||
|
@ -52,5 +63,52 @@ def test_rotary_emb(BATCH_SIZE, SEQ_LEN, H, D, dtype):
|
||||||
assert torch.allclose(k, k_ref, atol=1e-4, rtol=1e-4)
|
assert torch.allclose(k, k_ref, atol=1e-4, rtol=1e-4)
|
||||||
|
|
||||||
|
|
||||||
|
BATCH = 16
|
||||||
|
configs = [
|
||||||
|
triton.testing.Benchmark(
|
||||||
|
x_names=["num_tokens"],
|
||||||
|
x_vals=[2**i for i in range(4, 11)],
|
||||||
|
line_arg="provider",
|
||||||
|
line_vals=["torch_rotary_emb_func", "triton_rotary_emb_func"],
|
||||||
|
line_names=["torch_rotary_emb_func", "triton_rotary_emb_func"],
|
||||||
|
styles=[("red", "-"), ("blue", "-")],
|
||||||
|
ylabel="ms",
|
||||||
|
plot_name=f"rotary_emb-batch-{BATCH}",
|
||||||
|
args={"num_kv_heads": 16},
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@triton.testing.perf_report(configs)
|
||||||
|
def benchmark_rotary_emb(
|
||||||
|
provider: str,
|
||||||
|
num_tokens: int,
|
||||||
|
num_kv_heads: int,
|
||||||
|
):
|
||||||
|
warmup = 10
|
||||||
|
rep = 100
|
||||||
|
|
||||||
|
head_dim = 128
|
||||||
|
dtype = torch.float16
|
||||||
|
q_shape = (num_tokens, num_kv_heads, head_dim)
|
||||||
|
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
|
||||||
|
k_shape = (num_tokens, num_kv_heads, head_dim)
|
||||||
|
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
|
||||||
|
cos_shape = (num_tokens, head_dim // 2)
|
||||||
|
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||||||
|
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||||||
|
|
||||||
|
if provider == "torch_rotary_emb_func":
|
||||||
|
fn = lambda: torch_rotary_emb(q, cos, sin)
|
||||||
|
elif provider == "triton_rotary_emb_func":
|
||||||
|
fn = lambda: rotary_embedding(q, k, cos, sin)
|
||||||
|
else:
|
||||||
|
raise ValueError("Undefined provider")
|
||||||
|
|
||||||
|
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
||||||
|
return ms
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
test_rotary_emb(4, 64, 32, 64, torch.float32)
|
test_rotary_emb(4, 64, 32, 64, torch.float32)
|
||||||
|
# benchmark_rotary_emb.run(save_path=".",print_data=True)
|
||||||
|
|
Loading…
Reference in New Issue