[Inference] Benchmarking rotary embedding and add a fetch function (#5277)

* fix bugs and add a cos/sin cache fetch func

* add docstring

* fix bug

* fix
pull/5306/head
Jianghai 2024-01-23 12:11:53 +08:00 committed by GitHub
parent b7853196a0
commit 8e606ecc7e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 58 additions and 0 deletions

View File

@ -1,9 +1,20 @@
import pytest
import torch
from packaging import version
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
from colossalai.kernel.triton import rotary_embedding
try:
import triton # noqa
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
def torch_rotary_emb(x, cos, sin):
seq_len, h, dim = x.shape
@ -52,5 +63,52 @@ def test_rotary_emb(BATCH_SIZE, SEQ_LEN, H, D, dtype):
assert torch.allclose(k, k_ref, atol=1e-4, rtol=1e-4)
BATCH = 16
configs = [
triton.testing.Benchmark(
x_names=["num_tokens"],
x_vals=[2**i for i in range(4, 11)],
line_arg="provider",
line_vals=["torch_rotary_emb_func", "triton_rotary_emb_func"],
line_names=["torch_rotary_emb_func", "triton_rotary_emb_func"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"rotary_emb-batch-{BATCH}",
args={"num_kv_heads": 16},
)
]
@triton.testing.perf_report(configs)
def benchmark_rotary_emb(
provider: str,
num_tokens: int,
num_kv_heads: int,
):
warmup = 10
rep = 100
head_dim = 128
dtype = torch.float16
q_shape = (num_tokens, num_kv_heads, head_dim)
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
k_shape = (num_tokens, num_kv_heads, head_dim)
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
cos_shape = (num_tokens, head_dim // 2)
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
if provider == "torch_rotary_emb_func":
fn = lambda: torch_rotary_emb(q, cos, sin)
elif provider == "triton_rotary_emb_func":
fn = lambda: rotary_embedding(q, k, cos, sin)
else:
raise ValueError("Undefined provider")
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if __name__ == "__main__":
test_rotary_emb(4, 64, 32, 64, torch.float32)
# benchmark_rotary_emb.run(save_path=".",print_data=True)