[LowLevelZero] low level zero support lora (#5153)

* low level zero support lora

low level zero support lora

* add checkpoint test

* add checkpoint test

* fix

* fix

* fix

* fix

fix

fix

fix

* fix

* fix

fix

fix

fix

fix

fix

fix

* fix

* fix

fix

fix

fix

fix

fix

fix

* fix

* test ci

* git # This is a combination of 3 commits.

Update low_level_zero_plugin.py

Update low_level_zero_plugin.py

fix

fix

fix

* fix naming

fix naming

fix naming

fix
pull/5670/head
flybird11111 2023-12-21 17:01:01 +08:00 committed by Hongxin Liu
parent 14b0d4c7e5
commit 8954a0c2e2
8 changed files with 264 additions and 8 deletions

View File

@ -1,5 +1,7 @@
import enum
import logging
import os
import warnings
from functools import partial
from pathlib import Path
from types import MethodType
@ -7,6 +9,7 @@ from typing import Callable, Dict, Iterator, List, Optional, Tuple
import torch
import torch.nn as nn
from torch.nn import Parameter
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from torch.utils._pytree import tree_map
@ -42,6 +45,12 @@ def _convert_floating_point(x, dtype: torch.dtype = torch.float16):
SUPPORTED_PRECISION = ["fp16", "bf16", "fp32"]
class OptimizerParamCheckState(enum.Enum):
ORIGIN_PARAM_FINDED = 0
ORIGIN_PARAM_NOT_FIND = -1
LORA_PARM_EXISTED = -2
class LowLevelZeroModel(ModelWrapper, AMPModelMixin):
def __init__(self, module: nn.Module, precision: str) -> None:
super().__init__(module)
@ -209,6 +218,19 @@ class LowLevelZeroCheckpointIO(TorchDDPCheckpointIO):
super().load_sharded_model(model, checkpoint_index_file, strict, use_safetensors, load_sub_module)
model.update_master_params()
def save_lora_as_pretrained(self, model, checkpoint, use_safetensors):
if os.path.isfile(checkpoint):
logging.error(f"Provided path ({checkpoint}) should be a directory, not a file")
return
from peft import PeftModel
assert isinstance(model, ModelWrapper), "Please boost the model before saving!"
peft_model = model.unwrap()
assert isinstance(
peft_model, PeftModel
), "The model doesn't have lora adapters, please enable lora before saving."
return peft_model.save_pretrained(checkpoint, safe_serialization=use_safetensors)
class LowLevelZeroPlugin(DPPluginBase):
"""
@ -288,6 +310,7 @@ class LowLevelZeroPlugin(DPPluginBase):
cpu_offload=cpu_offload,
master_weights=master_weights,
)
self.lora_enabled = False
self.verbose = verbose
# set class name with stage, for better error message
@ -311,6 +334,72 @@ class LowLevelZeroPlugin(DPPluginBase):
def supported_devices(self) -> List[str]:
return ["cuda", "npu"]
def support_lora(self) -> bool:
return True
def enable_lora(
self, model: nn.Module, pretrained_dir: Optional[str] = None, lora_config: Optional[Dict] = None
) -> nn.Module:
from peft import PeftModel, get_peft_model
assert not isinstance(model, LowLevelZeroModel), "Lora should be enabled before boosting the model."
self.lora_enabled = True
warnings.warn("You have enabled LoRa training. Please check the hyperparameters such as lr")
if pretrained_dir is None:
peft_model = get_peft_model(model, lora_config)
else:
peft_model = PeftModel.from_pretrained(model, pretrained_dir, is_trainable=True)
return peft_model
def get_param_group_id(self, optimizer: Optimizer, origin_param: Parameter):
origin_param_id = id(origin_param)
for group_id, param_group in enumerate(optimizer.param_groups):
for p in param_group["params"]:
if id(p) == origin_param_id:
return group_id
return -1
def get_param_group_id(self, optimizer: Optimizer, origin_param: Parameter, lora_param: Parameter):
origin_param_id = id(origin_param)
lora_param_id = id(lora_param)
target_group_id = None
for group_id, param_group in enumerate(optimizer.param_groups):
for p in param_group["params"]:
if id(p) == lora_param_id:
# check if the lora parameter exists.
return target_group_id, OptimizerParamCheckState.LORA_PARM_EXISTED
if id(p) == origin_param_id:
target_group_id = group_id
if target_group_id is not None:
return target_group_id, OptimizerParamCheckState.ORIGIN_PARAM_FINDED
else:
return target_group_id, OptimizerParamCheckState.ORIGIN_PARAM_NOT_FIND
def add_lora_params_to_optimizer(self, model, optimizer):
"""add lora parameters to optimizer"""
name2param = {}
for name, param in model.named_parameters():
name2param[name] = param
for name, param in name2param.items():
if "lora_A" in name or "lora_B" in name:
origin_key = name.replace("lora_A.", "")
origin_key = origin_key.replace("lora_B.", "")
origin_key = origin_key.replace(f"{model.active_adapter}", "base_layer")
origin_param = name2param[origin_key]
group_id, check_state = self.get_param_group_id(optimizer, origin_param, param)
if check_state == OptimizerParamCheckState.ORIGIN_PARAM_NOT_FIND:
warnings.warn(
"Origin parameter {origin_key} related to {name} doesn't exist in optimizer param_groups."
)
elif (
check_state == OptimizerParamCheckState.ORIGIN_PARAM_FINDED
and group_id is not None
and group_id >= 0
):
optimizer.param_groups[group_id]["params"].append(param)
def configure(
self,
model: nn.Module,
@ -319,6 +408,15 @@ class LowLevelZeroPlugin(DPPluginBase):
dataloader: Optional[DataLoader] = None,
lr_scheduler: Optional[LRScheduler] = None,
) -> Tuple[nn.Module, OptimizerWrapper, Callable, DataLoader, LRScheduler]:
if self.lora_enabled:
from peft import PeftModel
assert isinstance(
model, PeftModel
), "The model should have been wrapped as a PeftModel when self.lora_enabled is True"
if optimizer is not None:
self.add_lora_params_to_optimizer(model, optimizer)
if not isinstance(model, ModelWrapper):
model = LowLevelZeroModel(model, self.precision)
@ -340,8 +438,3 @@ class LowLevelZeroPlugin(DPPluginBase):
def no_sync(self, model: nn.Module, optimizer: OptimizerWrapper) -> Iterator[None]:
assert isinstance(optimizer, LowLevelZeroOptimizer)
return optimizer.no_sync()
def enable_lora(
self, model: nn.Module, pretrained_dir: Optional[str] = None, lora_config: Optional[Dict] = None
) -> nn.Module:
raise NotImplementedError

View File

@ -45,6 +45,18 @@ def _cuda_safe_tensor_to_object(tensor: torch.Tensor, tensor_size: torch.Size) -
return unpickle
def check_for_nccl_backend(group):
pg = group or c10d._get_default_group()
# Gate PG wrapper check on Gloo availability.
if c10d._GLOO_AVAILABLE:
# It is not expected for PG to be wrapped many times, but support it just
# in case
while isinstance(pg, c10d._ProcessGroupWrapper):
pg = pg.wrapped_pg
return c10d.is_nccl_available() and pg.name() == c10d.Backend.NCCL
# NOTE: FIXME: NPU DOES NOT support isend nor irecv, so broadcast is kept for future use
def _broadcast_object_list(
object_list: List[Any], src: int, group: ProcessGroup, device: Optional[Union[torch.device, str, int]] = None

View File

@ -82,6 +82,9 @@ class GradientStore(BaseStore):
"""
grad_list = []
# When using LoRa and the user sets multiple param_groups, it is possible that some param_groups have no parameters with gradients.
if group_id not in self._grads_of_params.keys():
return grad_list
for param_grads in self._grads_of_params[group_id].values():
grad_list.append(param_grads[self._working_index])

View File

@ -18,5 +18,5 @@ flash_attn
datasets
pydantic
ray
peft
peft>=0.7.1
#auto-gptq now not support torch1.12

View File

@ -17,3 +17,4 @@ sentencepiece
google
protobuf
transformers==4.36.2
peft>=0.7.1

View File

@ -1,4 +1,4 @@
from typing import Callable, Iterator, List, Tuple, Union
from typing import Callable, Dict, Iterator, List, Tuple, Union
import torch
import torch.distributed as dist
@ -51,6 +51,12 @@ class DPPluginWrapper(DPPluginBase):
def no_sync(self, model: nn.Module) -> Iterator[None]:
pass
def enable_lora(self, model: nn.Module, pretrained_dir: str, lora_config: Dict) -> nn.Module:
pass
def support_lora(self) -> bool:
pass
def check_dataloader_sharding():
plugin = DPPluginWrapper()

View File

@ -2,6 +2,7 @@ from typing import Optional
import torch
import torch.distributed as dist
from peft import LoraConfig
from torch.optim import Adam
import colossalai
@ -22,13 +23,17 @@ _STUCK_MODELS = ["transformers_albert_for_multiple_choice"]
@clear_cache_before_run()
def run_fn(stage, model_fn, data_gen_fn, output_transform_fn) -> Optional[str]:
def run_fn(stage, model_fn, data_gen_fn, output_transform_fn, lora_config=None) -> Optional[str]:
device = get_accelerator().get_current_device()
try:
plugin = LowLevelZeroPlugin(stage=stage, max_norm=1.0, initial_scale=2**5)
booster = Booster(plugin=plugin)
model = model_fn()
optimizer = Adam(model.parameters(), lr=1e-3)
if lora_config is not None:
model = booster.enable_lora(model, lora_config=lora_config)
criterion = lambda x: x.mean()
data = data_gen_fn()
@ -48,6 +53,7 @@ def run_fn(stage, model_fn, data_gen_fn, output_transform_fn) -> Optional[str]:
except Exception as e:
return repr(e)
# raise e
@parameterize("stage", [2])
@ -91,10 +97,42 @@ def check_low_level_zero_plugin(stage: int, early_stop: bool = True):
assert len(failed_info) == 0, "\n".join([f"{k}: {v}" for k, v in failed_info.items()])
@parameterize("stage", [2])
@parameterize("model_name", ["transformers_llama"])
def check_low_level_zero_lora(stage, model_name, early_stop: bool = True):
passed_models = []
failed_info = {} # (model_name, error) pair
sub_model_zoo = model_zoo.get_sub_registry(model_name)
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
task_type = None
if name == "transformers_llama_for_casual_lm":
task_type = "CAUSAL_LM"
if name == "transformers_llama_for_sequence_classification":
task_type = "SEQ_CLS"
lora_config = LoraConfig(task_type=task_type, r=8, lora_alpha=32, lora_dropout=0.1)
err = run_fn(stage, model_fn, data_gen_fn, output_transform_fn, lora_config)
torch.cuda.empty_cache()
if err is None:
passed_models.append(name)
else:
failed_info[name] = err
if early_stop:
break
if dist.get_rank() == 0:
print(f"Passed models({len(passed_models)}): {passed_models}\n\n")
print(f"Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n")
assert len(failed_info) == 0, "\n".join([f"{k}: {v}" for k, v in failed_info.items()])
def run_dist(rank, world_size, port, early_stop: bool = True):
# init dist env
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host="localhost")
check_low_level_zero_plugin(early_stop=early_stop)
check_low_level_zero_lora(early_stop=early_stop)
@rerun_if_address_is_in_use()

View File

@ -1,5 +1,9 @@
from copy import deepcopy
from typing import Optional
import torch
import torch.distributed as dist
from peft import LoraConfig
from torchvision.models import resnet18
from utils import shared_tempdir
@ -15,6 +19,7 @@ from colossalai.testing import (
spawn,
)
from colossalai.zero import LowLevelZeroOptimizer
from tests.kit.model_zoo import model_zoo
# stage 1 and 2 process the optimizer/mode the same way
@ -69,9 +74,107 @@ def check_low_level_zero_checkpointIO(stage: int, shard: bool, offload: bool):
torch.cuda.empty_cache()
def run_fn(stage, shard, offload, model_fn, data_gen_fn, output_transform_fn, lora_config=None) -> Optional[str]:
try:
plugin = LowLevelZeroPlugin(stage=stage, max_norm=1.0, initial_scale=2**5, cpu_offload=offload)
new_plugin = LowLevelZeroPlugin(stage=stage, max_norm=1.0, initial_scale=2**5, cpu_offload=offload)
booster = Booster(plugin=plugin)
new_booster = Booster(plugin=new_plugin)
model = model_fn()
optimizer = HybridAdam(model.parameters(), lr=1e-3)
new_model = deepcopy(model)
new_optimizer = HybridAdam(new_model.parameters(), lr=1e-3)
model = booster.enable_lora(model, lora_config=lora_config)
criterion = lambda x: x.mean()
data = data_gen_fn()
data = {
k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()
}
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
booster.backward(loss, optimizer)
optimizer.step()
with shared_tempdir() as tempdir:
model_ckpt_path = f"{tempdir}/model"
optimizer_ckpt_path = f"{tempdir}/optimizer"
booster.save_lora_as_pretrained(model, model_ckpt_path)
booster.save_optimizer(optimizer, optimizer_ckpt_path, shard=False)
new_model = new_booster.enable_lora(new_model, pretrained_dir=model_ckpt_path, lora_config=lora_config)
new_model, new_optimizer, criterion, _, _ = new_booster.boost(new_model, new_optimizer, criterion)
check_state_dict_equal(model.state_dict(), new_model.state_dict(), False)
# check master weight
assert isinstance(new_optimizer, LowLevelZeroOptimizer)
working_param_id_set = set(id(p) for p in new_model.parameters())
for p_id, master_param in new_optimizer._param_store.working_to_master_param.items():
assert p_id in working_param_id_set
working_param = new_optimizer._param_store.master_to_working_param[id(master_param)]
padding = new_optimizer._param_store.get_param_padding_size(working_param)
padded_param = torch.nn.functional.pad(working_param.data.view(-1), (0, padding))
working_shard = padded_param.chunk(dist.get_world_size())[dist.get_rank()]
assert torch.equal(
working_shard, master_param.data.view(-1).to(dtype=padded_param.dtype, device=padded_param.device)
)
new_booster.load_optimizer(new_optimizer, optimizer_ckpt_path)
check_state_dict_equal(optimizer.optim.state_dict(), new_optimizer.optim.state_dict(), False)
except Exception as e:
# return repr(e)
raise e
@clear_cache_before_run()
@parameterize("stage", [2])
@parameterize("shard", [True, False])
@parameterize("offload", [False, True])
@parameterize("model_name", ["transformers_llama"])
def check_low_level_zero_lora_checkpointIO(
stage: int, shard: bool, offload: bool, model_name: str, early_stop: bool = True
):
passed_models = []
failed_info = {} # (model_name, error) pair
sub_model_zoo = model_zoo.get_sub_registry(model_name)
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
if name != "transformers_llama":
continue
task_type = None
if name == "transformers_llama_for_casual_lm":
task_type = "CAUSAL_LM"
if name == "transformers_llama_for_sequence_classification":
task_type = "SEQ_CLS"
lora_config = LoraConfig(task_type=task_type, r=8, lora_alpha=32, lora_dropout=0.1)
err = run_fn(stage, shard, offload, model_fn, data_gen_fn, output_transform_fn, lora_config)
torch.cuda.empty_cache()
if err is None:
passed_models.append(name)
else:
failed_info[name] = err
if early_stop:
break
if dist.get_rank() == 0:
print(f"Passed models({len(passed_models)}): {passed_models}\n\n")
print(f"Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n")
assert len(failed_info) == 0, "\n".join([f"{k}: {v}" for k, v in failed_info.items()])
def run_dist(rank, world_size, port):
colossalai.launch(config=(dict()), rank=rank, world_size=world_size, port=port, host="localhost")
check_low_level_zero_checkpointIO()
check_low_level_zero_lora_checkpointIO()
torch.cuda.empty_cache()