mirror of https://github.com/hpcaitech/ColossalAI
parent
aaead33cfe
commit
88804aee49
@ -1,4 +1,5 @@
|
|||||||
from colossalai.zero.shard_utils.base_shard_strategy import BaseShardStrategy
|
from .base_shard_strategy import BaseShardStrategy
|
||||||
from colossalai.zero.shard_utils.tensor_shard_strategy import TensorShardStrategy
|
from .bucket_tensor_shard_strategy import BucketTensorShardStrategy
|
||||||
|
from .tensor_shard_strategy import TensorShardStrategy
|
||||||
|
|
||||||
__all__ = ['BaseShardStrategy', 'TensorShardStrategy']
|
__all__ = ['BaseShardStrategy', 'TensorShardStrategy', 'BucketTensorShardStrategy']
|
||||||
|
@ -0,0 +1,38 @@
|
|||||||
|
from typing import List
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
from colossalai.utils import get_current_device
|
||||||
|
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
|
||||||
|
from torch._utils import _flatten_dense_tensors as flatten
|
||||||
|
|
||||||
|
from .tensor_shard_strategy import TensorShardStrategy
|
||||||
|
|
||||||
|
|
||||||
|
class BucketTensorShardStrategy(TensorShardStrategy):
|
||||||
|
|
||||||
|
def gather(self, tensor_list: List[ShardedTensor]):
|
||||||
|
tensor_list: List[ShardedTensor] = [t for t in tensor_list if t.is_sharded]
|
||||||
|
if len(tensor_list) == 0:
|
||||||
|
return
|
||||||
|
target_device = tensor_list[0].device
|
||||||
|
dtype = tensor_list[0].dtype
|
||||||
|
buffer_list: List[torch.Tensor] = []
|
||||||
|
tensor_numels = [t.payload.numel() for t in tensor_list]
|
||||||
|
buffer_size = sum(tensor_numels)
|
||||||
|
for i in range(self.world_size):
|
||||||
|
if i == self.local_rank:
|
||||||
|
buffer_list.append(flatten([t.payload for t in tensor_list]).cuda(get_current_device()))
|
||||||
|
else:
|
||||||
|
buffer_list.append(torch.zeros(buffer_size, dtype=dtype, device=get_current_device()))
|
||||||
|
dist.all_gather(buffer_list, buffer_list[self.local_rank], group=self.process_group)
|
||||||
|
# Move to target device before splitting buffer
|
||||||
|
# Ensure we utilize maximum PCIE bandwidth
|
||||||
|
buffer_list = [buffer.to(target_device) for buffer in buffer_list]
|
||||||
|
offset = 0
|
||||||
|
for i, t in enumerate(tensor_list):
|
||||||
|
gathered_payload = [buffer[offset:offset + tensor_numels[i]] for buffer in buffer_list]
|
||||||
|
gathered_payload = torch.cat(gathered_payload)[:t.origin_numel].view(t.origin_shape)
|
||||||
|
t.reset_payload(gathered_payload)
|
||||||
|
t.is_sharded = False
|
||||||
|
offset += tensor_numels[i]
|
Loading…
Reference in new issue