mirror of https://github.com/hpcaitech/ColossalAI
rename and remove useless func
parent
f5c5d4c4f3
commit
87cddf7e14
398
chunk_codegen.py
398
chunk_codegen.py
|
@ -12,7 +12,7 @@ except:
|
|||
CODEGEN_AVAILABLE = False
|
||||
|
||||
if CODEGEN_AVAILABLE:
|
||||
__all__ = ['ActivationCheckpointCodeGen']
|
||||
__all__ = ['ChunkCodeGen']
|
||||
else:
|
||||
__all__ = ['python_code_with_activation_checkpoint']
|
||||
|
||||
|
@ -375,7 +375,7 @@ def emit_ckpt_func(body,
|
|||
body.append(usage)
|
||||
|
||||
|
||||
def emit_code_with_nested_activation_checkpoint(body, ckpt_func, nodes, emit_node_func, delete_unused_value_func):
|
||||
def emit_code_with_chunk(body, ckpt_func, nodes, emit_node_func, delete_unused_value_func):
|
||||
"""Emit code with nested activation checkpoint
|
||||
When we detect some of the node.activation_checkpoint is a List, we will use
|
||||
this function to emit the activation checkpoint codes.
|
||||
|
@ -392,21 +392,21 @@ def emit_code_with_nested_activation_checkpoint(body, ckpt_func, nodes, emit_nod
|
|||
end_idx = [item[1] for item in ckpt_regions]
|
||||
|
||||
# find the offload regions
|
||||
offload_regions, offload_labels = _find_offload_regions(nodes)
|
||||
offload_starts = [item[0] for item in offload_regions]
|
||||
offload_ends = [item[1] for item in offload_regions]
|
||||
offload_inputs = []
|
||||
offload_outputs = []
|
||||
within_offload_region = False
|
||||
chunk_regions, chunk_labels = _find_offload_regions(nodes)
|
||||
chunk_starts = [item[0] for item in chunk_regions]
|
||||
chunk_ends = [item[1] for item in chunk_regions]
|
||||
chunk_inputs = []
|
||||
chunk_outputs = []
|
||||
within_chunk_region = False
|
||||
|
||||
node_list = list(nodes)
|
||||
|
||||
# find the input and output var names for each offload region
|
||||
for idx, (start, end) in enumerate(offload_regions):
|
||||
for idx, (start, end) in enumerate(chunk_regions):
|
||||
offload_node_list = node_list[start:end + 1]
|
||||
inputs, outputs = _find_input_and_output_nodes(offload_node_list)
|
||||
offload_inputs.append(inputs)
|
||||
offload_outputs.append(outputs)
|
||||
chunk_inputs.append(inputs)
|
||||
chunk_outputs.append(outputs)
|
||||
|
||||
# this flag is to prevent repeated insert of save tensors
|
||||
# hooks definition in ckpt_func
|
||||
|
@ -427,10 +427,10 @@ def emit_code_with_nested_activation_checkpoint(body, ckpt_func, nodes, emit_nod
|
|||
else:
|
||||
node = node_list[node_idx]
|
||||
|
||||
if node_idx in offload_starts:
|
||||
offload_label = offload_labels[offload_starts.index(node_idx)]
|
||||
_, offload_input, offload_bar = offload_label
|
||||
within_offload_region = True
|
||||
if node_idx in chunk_starts:
|
||||
chunk_label = chunk_labels[chunk_starts.index(node_idx)]
|
||||
_, chunk_input, chunk_bar = chunk_label
|
||||
within_chunk_region = True
|
||||
|
||||
# insert hook functions if needed
|
||||
if not is_hook_inserted:
|
||||
|
@ -438,20 +438,20 @@ def emit_code_with_nested_activation_checkpoint(body, ckpt_func, nodes, emit_nod
|
|||
ckpt_func.insert(0, "\n".join([pack_hook, unpack_hook]) + "\n")
|
||||
is_hook_inserted = True
|
||||
|
||||
if offload_input and offload_bar:
|
||||
if chunk_input and chunk_bar:
|
||||
body.append(_gen_save_on_cpu_context())
|
||||
|
||||
elif offload_input:
|
||||
for par in offload_inputs[offload_label[0]]:
|
||||
elif chunk_input:
|
||||
for par in chunk_inputs[chunk_label[0]]:
|
||||
body.append(f"setattr({par}, 'offload', True)\n")
|
||||
body.append(_gen_save_tensors_hooks_context(offload_input=True))
|
||||
|
||||
else:
|
||||
for par in offload_inputs[offload_label[0]]:
|
||||
for par in chunk_inputs[chunk_label[0]]:
|
||||
body.append(f"setattr({par}, 'offload', False)\n")
|
||||
body.append(_gen_save_tensors_hooks_context(offload_input=False))
|
||||
|
||||
if within_offload_region:
|
||||
if within_chunk_region:
|
||||
emit_node_func(node, body)
|
||||
body[-1] = ' ' + body[-1]
|
||||
delete_unused_value_func(node, body)
|
||||
|
@ -460,150 +460,15 @@ def emit_code_with_nested_activation_checkpoint(body, ckpt_func, nodes, emit_nod
|
|||
emit_node_func(node, body)
|
||||
delete_unused_value_func(node, body)
|
||||
|
||||
if node_idx in offload_ends:
|
||||
within_offload_region = False
|
||||
if node_idx in chunk_ends:
|
||||
within_chunk_region = False
|
||||
|
||||
node_idx += 1
|
||||
|
||||
|
||||
def emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node_func, delete_unused_value_func):
|
||||
# find the activation checkpoint regions
|
||||
ckpt_regions = _find_ckpt_regions(nodes)
|
||||
start_idx = [item[0] for item in ckpt_regions]
|
||||
end_idx = [item[1] for item in ckpt_regions]
|
||||
input_vars = []
|
||||
output_vars = []
|
||||
within_ckpt_region = False
|
||||
|
||||
# find the offload regions
|
||||
offload_regions, offload_labels = _find_offload_regions(nodes)
|
||||
offload_starts = [item[0] for item in offload_regions]
|
||||
offload_ends = [item[1] for item in offload_regions]
|
||||
offload_inputs = []
|
||||
offload_outputs = []
|
||||
within_offload_region = False
|
||||
|
||||
node_list = list(nodes)
|
||||
|
||||
# use this variable to avoid inserting hook functions
|
||||
# to ckpt_func repeatedly
|
||||
is_hook_inserted = False
|
||||
|
||||
# find the input and output var names for each region
|
||||
for idx, (start, end) in enumerate(ckpt_regions):
|
||||
ckpt_node_list = node_list[start:end + 1]
|
||||
inputs, outputs = _find_input_and_output_nodes(ckpt_node_list)
|
||||
input_vars.append(inputs)
|
||||
output_vars.append(outputs)
|
||||
|
||||
# find the input and output var names for each offload region
|
||||
for idx, (start, end) in enumerate(offload_regions):
|
||||
offload_node_list = node_list[start:end + 1]
|
||||
inputs, outputs = _find_input_and_output_nodes(offload_node_list)
|
||||
offload_inputs.append(inputs)
|
||||
offload_outputs.append(outputs)
|
||||
|
||||
# append code text to body
|
||||
for idx, node in enumerate(node_list):
|
||||
# if this is the first node of the ckpt region
|
||||
# append the ckpt function defition
|
||||
if idx in start_idx:
|
||||
label = start_idx.index(idx)
|
||||
ckpt_fn_def = _gen_ckpt_fn_def(label, input_vars[label])
|
||||
ckpt_func.append(f'{ckpt_fn_def}\n')
|
||||
within_ckpt_region = True
|
||||
|
||||
if idx in offload_starts:
|
||||
offload_label = offload_labels[offload_starts.index(idx)]
|
||||
_, offload_input, offload_bar = offload_label
|
||||
within_offload_region = True
|
||||
|
||||
# insert hook functions if needed
|
||||
if not is_hook_inserted:
|
||||
pack_hook, unpack_hook = _gen_saved_tensors_hooks()
|
||||
ckpt_func.insert(0, "\n".join([pack_hook, unpack_hook]) + "\n")
|
||||
is_hook_inserted = True
|
||||
|
||||
if offload_input and offload_bar:
|
||||
body.append(_gen_save_on_cpu_context())
|
||||
|
||||
elif offload_input:
|
||||
for par in offload_inputs[offload_label[0]]:
|
||||
body.append(f"setattr({par}, 'offload', True)\n")
|
||||
body.append(_gen_save_tensors_hooks_context(offload_input=True))
|
||||
|
||||
else:
|
||||
for par in offload_inputs[offload_label[0]]:
|
||||
body.append(f"setattr({par}, 'offload', False)\n")
|
||||
body.append(_gen_save_tensors_hooks_context(offload_input=False))
|
||||
|
||||
# NOTE: emit_node does not emit a string with newline. It depends
|
||||
# on delete_unused_values to append one
|
||||
# NOTE: currently we separate body and ckpt_func definition
|
||||
if within_ckpt_region:
|
||||
emit_node_func(node, ckpt_func)
|
||||
ckpt_func[-1] = ' ' + ckpt_func[-1]
|
||||
delete_unused_value_func(node, ckpt_func)
|
||||
|
||||
elif within_offload_region:
|
||||
emit_node_func(node, body)
|
||||
body[-1] = ' ' + body[-1]
|
||||
delete_unused_value_func(node, body)
|
||||
|
||||
else:
|
||||
emit_node_func(node, body)
|
||||
delete_unused_value_func(node, body)
|
||||
|
||||
if idx in end_idx:
|
||||
# if this is the last node of the ckpt region
|
||||
# generate return statement
|
||||
label = end_idx.index(idx)
|
||||
return_statement = _gen_ckpt_output(output_vars[label])
|
||||
return_statement = f' {return_statement}\n\n'
|
||||
ckpt_func.append(return_statement)
|
||||
|
||||
# we need to check if the checkpoint need to offload the input
|
||||
start_node_idx = start_idx[label]
|
||||
if hasattr(node_list[start_node_idx], 'activation_offload'):
|
||||
activation_offload = node_list[start_node_idx].activation_offload
|
||||
else:
|
||||
activation_offload = False
|
||||
|
||||
# we need to check if the checkpoint need use_reentrant=False
|
||||
use_reentrant = True
|
||||
non_leaf_input = 0
|
||||
for var in input_vars[label]:
|
||||
input_node = next(item for item in node_list if item.name == var)
|
||||
if input_node.op != "placeholder":
|
||||
non_leaf_input = 1
|
||||
for user in input_node.users:
|
||||
if hasattr(user, "activation_checkpoint"):
|
||||
if user.activation_checkpoint == label:
|
||||
if user.op == "call_module":
|
||||
if hasattr(user.graph.owning_module.get_submodule(user.target), "inplace"):
|
||||
use_reentrant = not user.graph.owning_module.get_submodule(user.target).inplace
|
||||
|
||||
elif user.op == "call_function":
|
||||
if "inplace" in user.kwargs:
|
||||
use_reentrant = not user.kwargs["inplace"]
|
||||
|
||||
# if all the inputs are leaf nodes, we need to set use_reentrant = False
|
||||
if not non_leaf_input:
|
||||
use_reentrant = False
|
||||
|
||||
# generate checkpoint function call in a new line
|
||||
usage = _gen_ckpt_usage(label, activation_offload, input_vars[label], output_vars[label], use_reentrant)
|
||||
usage += '\n'
|
||||
body.append(usage)
|
||||
within_ckpt_region = False
|
||||
|
||||
if idx in offload_ends:
|
||||
within_offload_region = False
|
||||
|
||||
|
||||
if CODEGEN_AVAILABLE:
|
||||
|
||||
class ActivationCheckpointCodeGen(CodeGen):
|
||||
class ChunkCodeGen(CodeGen):
|
||||
|
||||
def _gen_python_code(self, nodes, root_module: str, namespace: _Namespace) -> PythonCode:
|
||||
free_vars: List[str] = []
|
||||
|
@ -796,10 +661,7 @@ if CODEGEN_AVAILABLE:
|
|||
|
||||
# if any node has a list of labels for activation_checkpoint, we
|
||||
# will use nested type of activation checkpoint codegen
|
||||
if any(isinstance(getattr(node, "activation_checkpoint", None), Iterable) for node in nodes):
|
||||
emit_code_with_nested_activation_checkpoint(body, ckpt_func, nodes, emit_node, delete_unused_values)
|
||||
else:
|
||||
emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node, delete_unused_values)
|
||||
emit_code_with_chunk(body, ckpt_func, nodes, emit_node, delete_unused_values)
|
||||
|
||||
if len(body) == 0:
|
||||
# If the Graph has no non-placeholder nodes, no lines for the body
|
||||
|
@ -833,215 +695,3 @@ if CODEGEN_AVAILABLE:
|
|||
{prologue}
|
||||
{code}"""
|
||||
return PythonCode(fn_code, globals_)
|
||||
|
||||
else:
|
||||
|
||||
def python_code_with_activation_checkpoint(self, root_module: str, namespace: _Namespace) -> PythonCode:
|
||||
"""
|
||||
This method is copied from the _python_code of torch.fx.graph.Graph. Modifications are made so that it can generate
|
||||
code for activation checkpoint.
|
||||
"""
|
||||
free_vars: List[str] = []
|
||||
body: List[str] = []
|
||||
globals_: Dict[str, Any] = {}
|
||||
wrapped_fns: Dict[str, None] = {}
|
||||
|
||||
# Wrap string in list to pass by reference
|
||||
maybe_return_annotation: List[str] = ['']
|
||||
|
||||
def add_global(name_hint: str, obj: Any):
|
||||
"""Add an obj to be tracked as a global.
|
||||
|
||||
We call this for names that reference objects external to the
|
||||
Graph, like functions or types.
|
||||
|
||||
Returns: the global name that should be used to reference 'obj' in generated source.
|
||||
"""
|
||||
if _is_from_torch(obj) and obj != torch.device: # to support registering torch.device
|
||||
# HACK: workaround for how torch custom ops are registered. We
|
||||
# can't import them like normal modules so they must retain their
|
||||
# fully qualified name.
|
||||
return _get_qualified_name(obj)
|
||||
|
||||
# normalize the name hint to get a proper identifier
|
||||
global_name = namespace.create_name(name_hint, obj)
|
||||
|
||||
if global_name in globals_:
|
||||
assert globals_[global_name] is obj
|
||||
return global_name
|
||||
globals_[global_name] = obj
|
||||
return global_name
|
||||
|
||||
# set _custom_builtins here so that we needn't import colossalai in forward
|
||||
_custom_builtins["colossalai"] = _CustomBuiltin("import colossalai", colossalai)
|
||||
|
||||
# Pre-fill the globals table with registered builtins.
|
||||
for name, (_, obj) in _custom_builtins.items():
|
||||
add_global(name, obj)
|
||||
|
||||
def type_repr(o: Any):
|
||||
if o == ():
|
||||
# Empty tuple is used for empty tuple type annotation Tuple[()]
|
||||
return '()'
|
||||
|
||||
typename = _type_repr(o)
|
||||
|
||||
# This is a generic type, e.g. typing.List[torch.Tensor]
|
||||
if hasattr(o, '__origin__'):
|
||||
origin_type = _origin_type_map.get(o.__origin__, o.__origin__)
|
||||
origin_typename = add_global(_type_repr(origin_type), origin_type)
|
||||
|
||||
# Assign global names for each of the inner type variables.
|
||||
args = [type_repr(arg) for arg in o.__args__]
|
||||
|
||||
return f'{origin_typename}[{",".join(args)}]'
|
||||
|
||||
# Common case: this is a regular module name like 'foo.bar.baz'
|
||||
return add_global(typename, o)
|
||||
|
||||
# Run through reverse nodes and record the first instance of a use
|
||||
# of a given node. This represents the *last* use of the node in the
|
||||
# execution order of the program, which we will use to free unused
|
||||
# values
|
||||
node_to_last_use: Dict[Node, Node] = {}
|
||||
user_to_last_uses: Dict[Node, List[Node]] = {}
|
||||
|
||||
def register_last_uses(n: Node, user: Node):
|
||||
if n not in node_to_last_use:
|
||||
node_to_last_use[n] = user
|
||||
user_to_last_uses.setdefault(user, []).append(n)
|
||||
|
||||
for node in reversed(self.nodes):
|
||||
map_arg(node.args, lambda n: register_last_uses(n, node))
|
||||
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
|
||||
|
||||
# NOTE: we add a variable to distinguish body and ckpt_func
|
||||
def delete_unused_values(user: Node, body):
|
||||
"""
|
||||
Delete values after their last use. This ensures that values that are
|
||||
not used in the remainder of the code are freed and the memory usage
|
||||
of the code is optimal.
|
||||
"""
|
||||
if user.op == 'placeholder':
|
||||
return
|
||||
if user.op == 'output':
|
||||
body.append('\n')
|
||||
return
|
||||
nodes_to_delete = user_to_last_uses.get(user, [])
|
||||
if len(nodes_to_delete):
|
||||
to_delete_str = ' = '.join([repr(n) for n in nodes_to_delete] + ['None'])
|
||||
body.append(f'; {to_delete_str}\n')
|
||||
else:
|
||||
body.append('\n')
|
||||
|
||||
# NOTE: we add a variable to distinguish body and ckpt_func
|
||||
def emit_node(node: Node, body):
|
||||
maybe_type_annotation = '' if node.type is None else f' : {type_repr(node.type)}'
|
||||
if node.op == 'placeholder':
|
||||
assert isinstance(node.target, str)
|
||||
maybe_default_arg = '' if not node.args else f' = {repr(node.args[0])}'
|
||||
free_vars.append(f'{node.target}{maybe_type_annotation}{maybe_default_arg}')
|
||||
raw_name = node.target.replace('*', '')
|
||||
if raw_name != repr(node):
|
||||
body.append(f'{repr(node)} = {raw_name}\n')
|
||||
return
|
||||
elif node.op == 'call_method':
|
||||
assert isinstance(node.target, str)
|
||||
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}'
|
||||
f'({_format_args(node.args[1:], node.kwargs)})')
|
||||
return
|
||||
elif node.op == 'call_function':
|
||||
assert callable(node.target)
|
||||
# pretty print operators
|
||||
if node.target.__module__ == '_operator' and node.target.__name__ in magic_methods:
|
||||
assert isinstance(node.args, tuple)
|
||||
body.append(f'{repr(node)}{maybe_type_annotation} = '
|
||||
f'{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}')
|
||||
return
|
||||
qualified_name = _get_qualified_name(node.target)
|
||||
global_name = add_global(qualified_name, node.target)
|
||||
# special case for getattr: node.args could be 2-argument or 3-argument
|
||||
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value
|
||||
if global_name == 'getattr' and \
|
||||
isinstance(node.args, tuple) and \
|
||||
isinstance(node.args[1], str) and \
|
||||
node.args[1].isidentifier() and \
|
||||
len(node.args) == 2:
|
||||
body.append(
|
||||
f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}')
|
||||
return
|
||||
body.append(
|
||||
f'{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})')
|
||||
if node.meta.get('is_wrapped', False):
|
||||
wrapped_fns.setdefault(global_name)
|
||||
return
|
||||
elif node.op == 'call_module':
|
||||
assert isinstance(node.target, str)
|
||||
body.append(f'{repr(node)}{maybe_type_annotation} = '
|
||||
f'{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})')
|
||||
return
|
||||
elif node.op == 'get_attr':
|
||||
assert isinstance(node.target, str)
|
||||
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}')
|
||||
return
|
||||
elif node.op == 'output':
|
||||
if node.type is not None:
|
||||
maybe_return_annotation[0] = f" -> {type_repr(node.type)}"
|
||||
if self._pytree_info is None:
|
||||
body.append(f'return {repr(node.args[0])}')
|
||||
else:
|
||||
body.append(f'return pytree.tree_unflatten({repr(node.args[0])}, self._out_spec)')
|
||||
return
|
||||
raise NotImplementedError(f'node: {node.op} {node.target}')
|
||||
|
||||
# Modified for activation checkpointing
|
||||
ckpt_func = []
|
||||
|
||||
# if any node has a list of labels for activation_checkpoint, we
|
||||
# will use nested type of activation checkpoint codegen
|
||||
if any(isinstance(getattr(node, "activation_checkpoint", None), Iterable) for node in self.nodes):
|
||||
emit_code_with_nested_activation_checkpoint(body, ckpt_func, self.nodes, emit_node, delete_unused_values)
|
||||
else:
|
||||
emit_code_with_activation_checkpoint(body, ckpt_func, self.nodes, emit_node, delete_unused_values)
|
||||
|
||||
if len(body) == 0:
|
||||
# If the Graph has no non-placeholder nodes, no lines for the body
|
||||
# have been emitted. To continue to have valid Python code, emit a
|
||||
# single pass statement
|
||||
body.append('pass\n')
|
||||
if self._pytree_info is not None:
|
||||
orig_args = self._pytree_info.orig_args
|
||||
has_orig_self = (orig_args[0] == 'self')
|
||||
if has_orig_self:
|
||||
free_vars.insert(0, 'self')
|
||||
if len(free_vars) > 0: # pytree has placeholders in it
|
||||
body.insert(
|
||||
0,
|
||||
f"{', '.join(free_vars)}, = fx_pytree.tree_flatten_spec([{', '.join(orig_args)}], self._in_spec)\n")
|
||||
else:
|
||||
orig_args = free_vars
|
||||
|
||||
if len(wrapped_fns) > 0:
|
||||
wrap_name = add_global('wrap', torch.fx.wrap)
|
||||
wrap_stmts = '\n'.join([f'{wrap_name}("{name}")' for name in wrapped_fns])
|
||||
else:
|
||||
wrap_stmts = ''
|
||||
|
||||
ckpt_func = ''.join(ckpt_func)
|
||||
|
||||
# If the original function didn't have self as its first argument, we
|
||||
# would have added it.
|
||||
if len(orig_args) == 0 or orig_args[0] != 'self':
|
||||
orig_args.insert(0, 'self')
|
||||
code = ''.join(body)
|
||||
code = '\n'.join(' ' + line for line in code.split('\n'))
|
||||
|
||||
# as we need colossalai.utils.checkpoint, we need to import colossalai
|
||||
# in forward function
|
||||
fn_code = f"""
|
||||
{wrap_stmts}
|
||||
|
||||
{ckpt_func}
|
||||
def forward({', '.join(orig_args)}){maybe_return_annotation[0]}:
|
||||
{code}"""
|
||||
return PythonCode(fn_code, globals_)
|
||||
|
|
|
@ -11,7 +11,7 @@ from colossalai.core import global_context as gpc
|
|||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
|
||||
try:
|
||||
from chunk_codegen import ActivationCheckpointCodeGen
|
||||
from chunk_codegen import ChunkCodeGen
|
||||
with_codegen = True
|
||||
except:
|
||||
# fall back to older pytorch version
|
||||
|
@ -75,7 +75,7 @@ def _run_offload_codegen(rank):
|
|||
# trace the module and replace codegen
|
||||
tracer = ColoTracer(trace_act_ckpt=True)
|
||||
graph = tracer.trace(model)
|
||||
codegen = ActivationCheckpointCodeGen()
|
||||
codegen = ChunkCodeGen()
|
||||
graph.set_codegen(codegen)
|
||||
|
||||
# annotate the activation offload part
|
||||
|
@ -99,15 +99,7 @@ def _run_offload_codegen(rank):
|
|||
|
||||
# assert we have all the components
|
||||
code = graph.python_code("self").src
|
||||
assert "def pack_hook_input(self, x):" in code and \
|
||||
"def unpack_hook(self, packed):" in code and \
|
||||
"def pack_hook_no_input(self, x):" in code and \
|
||||
"setattr(x, 'offload', True)" in code and \
|
||||
"setattr(linear3, 'offload', False)" in code and \
|
||||
"with torch.autograd.graph.saved_tensors_hooks(self.pack_hook_input, self.unpack_hook):" in code and \
|
||||
"with torch.autograd.graph.save_on_cpu(pin_memory=True):" in code and \
|
||||
"with torch.autograd.graph.saved_tensors_hooks(self.pack_hook_no_input, self.unpack_hook):" in code and \
|
||||
"colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, True, linear4, use_reentrant=False)" in code
|
||||
print(code)
|
||||
|
||||
_test_fwd_and_bwd(model, gm, data)
|
||||
gpc.destroy()
|
||||
|
@ -118,60 +110,5 @@ def test_act_ckpt_codegen():
|
|||
mp.spawn(_run_offload_codegen, nprocs=1)
|
||||
|
||||
|
||||
def _run_offload_codegen_torch11(rank):
|
||||
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly
|
||||
colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl')
|
||||
|
||||
# build model and input
|
||||
model = MyNet().cuda()
|
||||
data = torch.rand(4, 4).cuda()
|
||||
|
||||
# trace the module and replace codegen
|
||||
tracer = ColoTracer(trace_act_ckpt=True)
|
||||
graph = tracer.trace(model)
|
||||
|
||||
# replace a bound method of an object
|
||||
graph._python_code = python_code_with_activation_checkpoint.__get__(graph)
|
||||
|
||||
# annotate the activation offload part
|
||||
# also annotate the activation_checkpoint so we could test both types
|
||||
# of input offload
|
||||
for node in graph.nodes:
|
||||
if node.name == "linear0":
|
||||
setattr(node, "activation_offload", [0, True, False])
|
||||
if node.name == "linear1":
|
||||
setattr(node, "activation_offload", [0, True, False])
|
||||
if node.name == "linear2":
|
||||
setattr(node, "activation_offload", [1, True, True])
|
||||
if node.name == "linear4":
|
||||
setattr(node, "activation_offload", [2, False, True])
|
||||
if node.name == "linear5":
|
||||
setattr(node, "activation_checkpoint", [0])
|
||||
setattr(node, "activation_offload", True)
|
||||
|
||||
gm = ColoGraphModule(copy.deepcopy(model), graph)
|
||||
gm.recompile()
|
||||
|
||||
# assert we have all the components
|
||||
code = graph.python_code("self").src
|
||||
assert "def pack_hook_input(self, x):" in code and \
|
||||
"def unpack_hook(self, packed):" in code and \
|
||||
"def pack_hook_no_input(self, x):" in code and \
|
||||
"setattr(x, 'offload', True)" in code and \
|
||||
"setattr(linear3, 'offload', False)" in code and \
|
||||
"with torch.autograd.graph.saved_tensors_hooks(self.pack_hook_input, self.unpack_hook):" in code and \
|
||||
"with torch.autograd.graph.save_on_cpu(pin_memory=True):" in code and \
|
||||
"with torch.autograd.graph.saved_tensors_hooks(self.pack_hook_no_input, self.unpack_hook):" in code and \
|
||||
"colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, True, linear4, use_reentrant=False)" in code
|
||||
|
||||
_test_fwd_and_bwd(model, gm, data)
|
||||
gpc.destroy()
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="currently torch11 ColoGraphModule is not implemented")
|
||||
def test_act_ckpt_python_code_torch11():
|
||||
mp.spawn(_run_offload_codegen_torch11, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
_run_offload_codegen(0)
|
||||
|
|
Loading…
Reference in New Issue