mirror of https://github.com/hpcaitech/ColossalAI
[example] add grok-1 inference (#5485)
* [misc] add submodule * remove submodule * [example] support grok-1 tp inference * [example] add grok-1 inference script * [example] refactor code * [example] add grok-1 readme * [exmaple] add test ci * [exmaple] update readmepull/5486/head
parent
d158fc0e64
commit
848a574c26
|
@ -0,0 +1,43 @@
|
|||
# Grok-1 Inference
|
||||
|
||||
## Install
|
||||
|
||||
```bash
|
||||
# Make sure you install colossalai from the latest source code
|
||||
git clone https://github.com/hpcaitech/ColossalAI.git
|
||||
cd ColossalAI
|
||||
pip install .
|
||||
cd examples/language/grok-1
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## Tokenizer preparation
|
||||
|
||||
You should download the tokenizer from the official grok-1 repository.
|
||||
|
||||
```bash
|
||||
wget https://github.com/xai-org/grok-1/raw/main/tokenizer.model
|
||||
```
|
||||
|
||||
## Inference
|
||||
|
||||
You need 8x A100 80GB or equivalent GPUs to run the inference.
|
||||
|
||||
We provide two scripts for inference. `run_inference_fast.sh` uses tensor parallelism provided by ColossalAI, and it is faster. `run_inference_slow.sh` uses auto device provided by transformers, and it is slower.
|
||||
|
||||
Command format:
|
||||
|
||||
```bash
|
||||
./run_inference_fast.sh <model_name_or_path> <tokenizer_path>
|
||||
./run_inference_slow.sh <model_name_or_path> <tokenizer_path>
|
||||
```
|
||||
|
||||
`model_name_or_path` can be a local path or a model name from Hugging Face model hub. We provided weights on model hub, named `hpcaitech/grok-1`.
|
||||
|
||||
Command example:
|
||||
|
||||
```bash
|
||||
./run_inference_fast.sh hpcaitech/grok-1 tokenizer.model
|
||||
```
|
||||
|
||||
It will take 5-10 minutes to load checkpoints. Don't worry, it's not stuck.
|
|
@ -0,0 +1,99 @@
|
|||
from typing import Dict, Union
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row, VocabParallelEmbedding1D
|
||||
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
||||
|
||||
|
||||
class Grok1Policy(Policy):
|
||||
def config_sanity_check(self):
|
||||
pass
|
||||
|
||||
def preprocess(self) -> nn.Module:
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
assert vocab_size % world_size == 0, f"vocab_size {vocab_size} must be divisible by world_size {world_size}"
|
||||
return self.model
|
||||
|
||||
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
|
||||
policy = {}
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
decoder_attribute_replacement = {
|
||||
"attn.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
||||
"attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
||||
"attn.num_key_value_heads": self.model.config.num_key_value_heads
|
||||
// self.shard_config.tensor_parallel_size,
|
||||
}
|
||||
decoder_submodule_replacement = [
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attn.q_proj",
|
||||
target_module=Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attn.k_proj",
|
||||
target_module=Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attn.v_proj",
|
||||
target_module=Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attn.o_proj",
|
||||
target_module=Linear1D_Row,
|
||||
),
|
||||
]
|
||||
for i in range(self.model.config.num_experts):
|
||||
decoder_submodule_replacement.extend(
|
||||
[
|
||||
SubModuleReplacementDescription(
|
||||
suffix=f"moe_block.experts[{i}].linear",
|
||||
target_module=Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix=f"moe_block.experts[{i}].linear_v",
|
||||
target_module=Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix=f"moe_block.experts[{i}].linear_1",
|
||||
target_module=Linear1D_Row,
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
policy["DecoderLayer"] = ModulePolicyDescription(
|
||||
attribute_replacement=decoder_attribute_replacement,
|
||||
sub_module_replacement=decoder_submodule_replacement,
|
||||
)
|
||||
self.append_or_create_submodule_replacement(
|
||||
description=SubModuleReplacementDescription(
|
||||
suffix="embed_tokens",
|
||||
target_module=VocabParallelEmbedding1D,
|
||||
),
|
||||
policy=policy,
|
||||
target_key="Grok1Model",
|
||||
)
|
||||
return policy
|
||||
|
||||
def postprocess(self):
|
||||
return self.model
|
||||
|
||||
|
||||
class Grok1ModelPolicy(Grok1Policy):
|
||||
pass
|
||||
|
||||
|
||||
class Grok1ForCausalLMPolicy(Grok1Policy):
|
||||
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
|
||||
policy = super().module_policy()
|
||||
self.append_or_create_submodule_replacement(
|
||||
description=SubModuleReplacementDescription(
|
||||
suffix="lm_head",
|
||||
target_module=Linear1D_Col,
|
||||
kwargs={"gather_output": not self.shard_config.parallel_output},
|
||||
),
|
||||
policy=policy,
|
||||
target_key="Grok1ModelForCausalLM",
|
||||
)
|
||||
return policy
|
|
@ -0,0 +1,32 @@
|
|||
import time
|
||||
|
||||
import torch
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
from transformers import AutoModelForCausalLM
|
||||
from utils import get_defualt_parser, inference, print_output
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = get_defualt_parser()
|
||||
args = parser.parse_args()
|
||||
start = time.time()
|
||||
torch.set_default_dtype(torch.bfloat16)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
args.pretrained,
|
||||
trust_remote_code=True,
|
||||
device_map="auto",
|
||||
torch_dtype=torch.bfloat16,
|
||||
)
|
||||
sp = SentencePieceProcessor(model_file=args.tokenizer)
|
||||
for text in args.text:
|
||||
output = inference(
|
||||
model,
|
||||
sp,
|
||||
text,
|
||||
max_new_tokens=args.max_new_tokens,
|
||||
do_sample=args.do_sample,
|
||||
temperature=args.temperature,
|
||||
top_k=args.top_k,
|
||||
top_p=args.top_p,
|
||||
)
|
||||
print_output(text, sp.decode(output))
|
||||
print(f"Overall time: {time.time() - start} seconds.")
|
|
@ -0,0 +1,50 @@
|
|||
import time
|
||||
|
||||
import torch
|
||||
from grok1_policy import Grok1ForCausalLMPolicy
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
from transformers import AutoModelForCausalLM
|
||||
from utils import get_defualt_parser, inference, print_output
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import HybridParallelPlugin
|
||||
from colossalai.cluster import DistCoordinator
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = get_defualt_parser()
|
||||
args = parser.parse_args()
|
||||
start = time.time()
|
||||
colossalai.launch_from_torch({})
|
||||
coordinator = DistCoordinator()
|
||||
plugin = HybridParallelPlugin(
|
||||
tp_size=coordinator.world_size,
|
||||
pp_size=1,
|
||||
precision="bf16",
|
||||
parallel_output=False,
|
||||
custom_policy=Grok1ForCausalLMPolicy(),
|
||||
)
|
||||
booster = Booster(plugin=plugin)
|
||||
torch.set_default_dtype(torch.bfloat16)
|
||||
with LazyInitContext(default_device=get_current_device()):
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
args.pretrained, trust_remote_code=True, torch_dtype=torch.bfloat16
|
||||
)
|
||||
model, *_ = booster.boost(model)
|
||||
sp = SentencePieceProcessor(model_file=args.tokenizer)
|
||||
for text in args.text:
|
||||
output = inference(
|
||||
model.unwrap(),
|
||||
sp,
|
||||
text,
|
||||
max_new_tokens=args.max_new_tokens,
|
||||
do_sample=args.do_sample,
|
||||
temperature=args.temperature,
|
||||
top_k=args.top_k,
|
||||
top_p=args.top_p,
|
||||
)
|
||||
if coordinator.is_master():
|
||||
print_output(text, sp.decode(output))
|
||||
coordinator.print_on_master(f"Overall time: {time.time() - start} seconds.")
|
|
@ -0,0 +1,4 @@
|
|||
torch>=2.1.0,<2.2.0
|
||||
colossalai>=0.3.6
|
||||
sentencepiece==0.1.99
|
||||
transformers==4.35.0
|
|
@ -0,0 +1,11 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
PRETRAINED=${1:-"hpcaitech/grok-1"}
|
||||
TOKENIZER=${2:-"tokenizer.model"}
|
||||
|
||||
torchrun --standalone --nproc_per_node 8 inference_tp.py --pretrained "$PRETRAINED" \
|
||||
--tokenizer "$TOKENIZER" \
|
||||
--max_new_tokens 64 \
|
||||
--text "The company's annual conference, featuring keynote speakers and exclusive product launches, will be held at the Los Angeles Convention Center from October 20th to October 23rd, 2021. Extract the date mentioned in the above sentence." \
|
||||
"将以下句子翻译成英语。 我喜欢看电影和读书。" \
|
||||
"All books have the same weight, 10 books weigh 5kg, what is the weight of 2 books?"
|
|
@ -0,0 +1,11 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
PRETRAINED=${1:-"hpcaitech/grok-1"}
|
||||
TOKENIZER=${2:-"tokenizer.model"}
|
||||
|
||||
python3 inference.py --pretrained "$PRETRAINED" \
|
||||
--tokenizer "$TOKENIZER" \
|
||||
--max_new_tokens 64 \
|
||||
--text "The company's annual conference, featuring keynote speakers and exclusive product launches, will be held at the Los Angeles Convention Center from October 20th to October 23rd, 2021. Extract the date mentioned in the above sentence." \
|
||||
"将以下句子翻译成英语。 我喜欢看电影和读书。" \
|
||||
"All books have the same weight, 10 books weigh 5kg, what is the weight of 2 books?"
|
|
@ -0,0 +1 @@
|
|||
pip install -r requirements.txt
|
|
@ -0,0 +1,46 @@
|
|||
import argparse
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class Bcolors:
|
||||
HEADER = "\033[95m"
|
||||
OKBLUE = "\033[94m"
|
||||
OKCYAN = "\033[96m"
|
||||
OKGREEN = "\033[92m"
|
||||
WARNING = "\033[93m"
|
||||
FAIL = "\033[91m"
|
||||
ENDC = "\033[0m"
|
||||
BOLD = "\033[1m"
|
||||
UNDERLINE = "\033[4m"
|
||||
|
||||
|
||||
def print_output(text, output):
|
||||
print(f"-----\n{Bcolors.OKBLUE}{text}{Bcolors.ENDC}{output[len(text):]}")
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def inference(model, sp, text, **generate_kwargs):
|
||||
input_ids = sp.encode(text)
|
||||
input_ids = torch.tensor([input_ids]).cuda()
|
||||
attention_mask = torch.ones_like(input_ids)
|
||||
inputs = {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
**generate_kwargs,
|
||||
}
|
||||
outputs = model.generate(**inputs)
|
||||
return outputs[0].tolist()
|
||||
|
||||
|
||||
def get_defualt_parser():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--pretrained", type=str, default="hpcaitech/grok-1")
|
||||
parser.add_argument("--tokenizer", type=str, default="tokenizer.model")
|
||||
parser.add_argument("--text", type=str, nargs="+", default=["Hi, what's your name?"])
|
||||
parser.add_argument("--max_new_tokens", type=int, default=30)
|
||||
parser.add_argument("--do_sample", action="store_true", default=False)
|
||||
parser.add_argument("--temperature", type=float, default=0.3, help="Set temperature value")
|
||||
parser.add_argument("--top_k", type=int, default=50, help="Set top_k value for top-k-filtering")
|
||||
parser.add_argument("--top_p", type=float, default=0.95, help="Set top_p value for generation")
|
||||
return parser
|
Loading…
Reference in New Issue