mirror of https://github.com/hpcaitech/ColossalAI
[chatgpt] fix inference demo loading bug (#2969)
* [chatgpt] fix inference demo loading bug * polishpull/2974/head
parent
bbf9c827c3
commit
82149e9d1b
|
@ -9,30 +9,34 @@ from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
|||
def eval(args):
|
||||
# configure model
|
||||
if args.model == 'gpt2':
|
||||
model = GPTActor(pretrained=args.pretrain).to(torch.cuda.current_device())
|
||||
actor = GPTActor().to(torch.cuda.current_device())
|
||||
elif args.model == 'bloom':
|
||||
model = BLOOMActor(pretrained=args.pretrain).to(torch.cuda.current_device())
|
||||
actor = BLOOMActor().to(torch.cuda.current_device())
|
||||
elif args.model == 'opt':
|
||||
model = OPTActor(pretrained=args.pretrain).to(torch.cuda.current_device())
|
||||
actor = OPTActor().to(torch.cuda.current_device())
|
||||
else:
|
||||
raise ValueError(f'Unsupported model "{args.model}"')
|
||||
|
||||
state_dict = torch.load(args.pretrain)
|
||||
actor.model.load_state_dict(state_dict)
|
||||
|
||||
|
||||
# configure tokenizer
|
||||
if args.model == 'gpt2':
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
elif args.model == 'bloom':
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.pretrain)
|
||||
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
elif args.model == 'opt':
|
||||
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
||||
tokenizer = AutoTokenizer.from_pretrained('facebook/opt-350m')
|
||||
else:
|
||||
raise ValueError(f'Unsupported model "{args.model}"')
|
||||
|
||||
model.eval()
|
||||
actor.eval()
|
||||
input = args.input
|
||||
input_ids = tokenizer.encode(input, return_tensors='pt').to(torch.cuda.current_device())
|
||||
outputs = model.generate(input_ids,
|
||||
outputs = actor.generate(input_ids,
|
||||
max_length=args.max_length,
|
||||
do_sample=True,
|
||||
top_k=50,
|
||||
|
@ -46,7 +50,7 @@ if __name__ == '__main__':
|
|||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt'])
|
||||
parser.add_argument('--pretrain', type=str, default=None)
|
||||
parser.add_argument('--input', type=str, default='Q: How are you ? A:')
|
||||
parser.add_argument('--input', type=str, default='Question: How are you ? Answer:')
|
||||
parser.add_argument('--max_length', type=int, default=100)
|
||||
args = parser.parse_args()
|
||||
eval(args)
|
||||
|
|
Loading…
Reference in New Issue