fix the ckpt bugs when using DDP (#769)

pull/773/head
LuGY 3 years ago committed by GitHub
parent 1f698f4406
commit 80e37eec42
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,6 +1,6 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch
from colossalai.logging import get_dist_logger
from colossalai.registry import HOOKS
@ -15,7 +15,12 @@ class SaveCheckpointHook(BaseHook):
Args:
interval (int, optional): Number of epochs between saving the checkpoint, defaults to 1.
if save_by_iter is True, this arg refers to the number of iters between saving.
checkpoint_dir (str, optional): File name to save the checkpoint, defaults to None.
model (torch.nn.Module, Optional): The model to save, defaults to None. When not passing,
'trainer.engine.model' will be used. We encourage you to pass the model in it to avoid some
unexpected bugs, especially when using **DDP**.
save_by_iter (bool, optional): Whether saving the checkpoint by iter, default to False.
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front
defaults to 10. If different hooks share same priority, the order of printing would
depend on the hooks order in the hook list.
@ -24,10 +29,14 @@ class SaveCheckpointHook(BaseHook):
def __init__(self,
interval: int = 1,
checkpoint_dir: str = None,
model: torch.nn.Module = None,
save_by_iter: bool = False,
priority: int = 10):
super().__init__(priority=priority)
self.interval = interval
self.checkpoint_dir = checkpoint_dir
self.model = model
self.save_by_iter = save_by_iter
self.logger = get_dist_logger()
# get lr scheduler from the LRSchedulerHook before train
@ -39,6 +48,24 @@ class SaveCheckpointHook(BaseHook):
if isinstance(hook, LRSchedulerHook):
self._lr_scheduler = hook.lr_scheduler
break
self.model = self.model if self.model is not None else trainer.engine.model
def after_train_iter(self, trainer, output, label, loss):
"""Saves the model after a training iter.
"""
# save by interval
if self.save_by_iter and trainer.cur_step % self.interval == 0:
save_checkpoint(self.checkpoint_dir,
trainer.cur_epoch,
self.model,
trainer.engine.optimizer,
self._lr_scheduler)
self.logger.info(
f'checkpoint for iteration {trainer.cur_step} is saved to {self.checkpoint_dir}', ranks=[0])
else:
pass
def after_train_epoch(self, trainer):
"""Saves the model after a training epoch.
@ -47,7 +74,7 @@ class SaveCheckpointHook(BaseHook):
if trainer.cur_epoch % self.interval == 0:
save_checkpoint(self.checkpoint_dir,
trainer.cur_epoch,
trainer.engine.model,
self.model,
trainer.engine.optimizer,
self._lr_scheduler)
self.logger.info(

Loading…
Cancel
Save