mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel]add embedding handler (#2089)
* [autoparallel] add embedding handler * fix bugspull/2092/head
parent
1fca5d79ea
commit
7f72eb0510
|
@ -3,6 +3,7 @@ from .batch_norm_handler import BatchNormModuleHandler
|
|||
from .binary_elementwise_handler import BinaryElementwiseHandler
|
||||
from .bmm_handler import AddBMMFunctionHandler, BMMFunctionHandler
|
||||
from .conv_handler import ConvFunctionHandler, ConvModuleHandler
|
||||
from .embedding_handler import EmbeddingFunctionHandler, EmbeddingModuleHandler
|
||||
from .experimental import PermuteHandler, ViewHandler
|
||||
from .getatrr_handler import GetattrHandler
|
||||
from .getitem_handler import GetItemHandler
|
||||
|
@ -23,5 +24,6 @@ __all__ = [
|
|||
'LayerNormModuleHandler', 'BatchNormModuleHandler', 'ConvModuleHandler', 'ConvFunctionHandler',
|
||||
'UnaryElementwiseHandler', 'ReshapeHandler', 'PlacehodlerHandler', 'OuputHandler', 'WhereHandler',
|
||||
'NormPoolingHandler', 'BinaryElementwiseHandler', 'MatMulHandler', 'operator_registry', 'ADDMMFunctionHandler',
|
||||
'GetItemHandler', 'GetattrHandler', 'ViewHandler', 'PermuteHandler', 'TensorConstructorHandler'
|
||||
'GetItemHandler', 'GetattrHandler', 'ViewHandler', 'PermuteHandler', 'TensorConstructorHandler',
|
||||
'EmbeddingModuleHandler', 'EmbeddingFunctionHandler'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,230 @@
|
|||
from typing import Dict, List, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.utils import update_partition_dim
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.tensor.sharding_spec import ShardingNotDivisibleError
|
||||
|
||||
from ..sharding_strategy import OperationData, OperationDataType, ShardingStrategy
|
||||
from .node_handler import ModuleHandler, NodeHandler
|
||||
from .registry import operator_registry
|
||||
from .strategy import EmbeddingStrategyGenerator, StrategyGenerator
|
||||
|
||||
__all__ = ['EmbeddingModuleHandler', 'EmbeddingFunctionHandler']
|
||||
|
||||
|
||||
def _convert_logical_sharding_to_physical_sharding_spec_for_embedding(strategy: ShardingStrategy, input_name: str,
|
||||
output_name: str) -> List[ShardingStrategy]:
|
||||
"""
|
||||
This function converts the logical sharding spec to the physical sharding spec for both the input and output
|
||||
of the embedding operation.
|
||||
|
||||
Args:
|
||||
strategy (ShardingStrategy): the logical strategy generated by the strategy generator.
|
||||
input_name (str): the name of the OperationData object for the input.
|
||||
output_name (str): the name of the OperationData object for the output.
|
||||
"""
|
||||
# the result will be a list of strategies
|
||||
sharding_strategies = []
|
||||
|
||||
# get operation data
|
||||
input_op_data = strategy.get_op_data_by_name(input_name)
|
||||
output_op_data = strategy.get_op_data_by_name(output_name)
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name(input_op_data.name)
|
||||
output_sharding_spec = strategy.get_sharding_spec_by_name(output_op_data.name)
|
||||
|
||||
# recover the last logical dimension to physical dimension
|
||||
last_logical_output_dims = len(output_op_data.logical_shape) - 1
|
||||
last_physical_output_dims = output_op_data.data.dim() - 1
|
||||
|
||||
# get logger for debug message
|
||||
logger = get_dist_logger()
|
||||
|
||||
# For the input of the embedding operation, it can be multi-dimensional. The sharding spec is only generated for
|
||||
# logical 1D non-matrix dimension, the logical non-matrix dimension can belong to the 0th to Nth dimension of the
|
||||
# physical input shape. Thus, we enumerate to get all possible cases.
|
||||
if input_sharding_spec.dim_partition_dict:
|
||||
# if bool(input_sharding_spec.dim_partition_dict), it means that the
|
||||
# the generated sharding strategy does shard the non-matrix dimension,
|
||||
# in this case, we need to do enumeration
|
||||
num_input_dims = input_op_data.data.dim()
|
||||
for i in range(num_input_dims):
|
||||
strategy_copy = strategy.clone()
|
||||
input_sharding_spec = strategy_copy.get_sharding_spec_by_name(input_op_data.name)
|
||||
output_sharding_spec = strategy_copy.get_sharding_spec_by_name(output_op_data.name)
|
||||
try:
|
||||
# replace the 0th dimension in the logical sharding with ith dimension in the physical sharding
|
||||
update_partition_dim(sharding_spec=input_sharding_spec,
|
||||
dim_mapping={0: i},
|
||||
physical_shape=input_op_data.data.shape,
|
||||
inplace=True)
|
||||
|
||||
if last_logical_output_dims in output_sharding_spec.dim_partition_dict:
|
||||
dim_mapping = {0: i, last_logical_output_dims: last_physical_output_dims}
|
||||
else:
|
||||
dim_mapping = {0: i}
|
||||
|
||||
update_partition_dim(sharding_spec=output_sharding_spec,
|
||||
dim_mapping=dim_mapping,
|
||||
physical_shape=output_op_data.data.shape,
|
||||
inplace=True)
|
||||
|
||||
strategy_copy.name = f'{strategy.name}_{i}'
|
||||
sharding_strategies.append(strategy_copy)
|
||||
|
||||
except ShardingNotDivisibleError as e:
|
||||
logger.debug(
|
||||
f'Errored occurred when converting the logical sharding spec to the physical one. Error details: {e}'
|
||||
)
|
||||
else:
|
||||
# the generated sharding strategy does not shard the non-matrix dimension,
|
||||
# in this case, we don't need to do enumeration
|
||||
# but instead, we still need to convert the logical shape to physical shape
|
||||
strategy_copy = strategy.clone()
|
||||
input_sharding_spec = strategy_copy.get_sharding_spec_by_name(input_op_data.name)
|
||||
output_sharding_spec = strategy_copy.get_sharding_spec_by_name(output_op_data.name)
|
||||
|
||||
# after updating, the logical shape will be replaced by the physical shape
|
||||
update_partition_dim(sharding_spec=input_sharding_spec,
|
||||
dim_mapping={},
|
||||
physical_shape=input_op_data.data.shape,
|
||||
inplace=True)
|
||||
|
||||
if last_logical_output_dims in output_sharding_spec.dim_partition_dict:
|
||||
dim_mapping = {last_logical_output_dims: last_physical_output_dims}
|
||||
else:
|
||||
dim_mapping = {}
|
||||
|
||||
update_partition_dim(sharding_spec=output_sharding_spec,
|
||||
dim_mapping=dim_mapping,
|
||||
physical_shape=output_op_data.data.shape,
|
||||
inplace=True)
|
||||
sharding_strategies.append(strategy_copy)
|
||||
|
||||
return sharding_strategies
|
||||
|
||||
|
||||
@operator_registry.register(torch.nn.Embedding)
|
||||
class EmbeddingModuleHandler(ModuleHandler):
|
||||
"""
|
||||
A EmbeddingModuleHandler which deals with the sharding strategies for nn.Embedding module.
|
||||
"""
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(EmbeddingStrategyGenerator(op_data_mapping, self.device_mesh))
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
# In nn.Embedding operation, all the dimensions of input will be treated as the batch dimension,
|
||||
# and then the sharding spec will be generated based on the logical 1D tensor.
|
||||
# After that, the logical sharding info will be enumerated among all the physical dimensions.
|
||||
# Finally, the input will be transformed back to its original shape in self.post_process
|
||||
input_meta_data = self.node.args[0]._meta_data
|
||||
input_logical_shape = input_meta_data.view(-1).shape
|
||||
physical_input_operand = OperationData(name=str(self.node.args[0]),
|
||||
type=OperationDataType.ARG,
|
||||
data=input_meta_data,
|
||||
logical_shape=input_logical_shape)
|
||||
|
||||
physical_other_operand = OperationData(name="weight",
|
||||
type=OperationDataType.PARAM,
|
||||
data=self.named_parameters['weight'])
|
||||
|
||||
# Same as input, in nn.Embedding operation, all the dimensions of output will be treated as
|
||||
# (batch dimension, embedding dimension), and then the sharding spec will be generated based
|
||||
# on the logical 2D tensor.
|
||||
# After that, the logical sharding info of batch dimension will be enumerated among all the physical dimensions.
|
||||
# Finally, the output will be transformed back to its original shape in self.post_process
|
||||
output_meta_data = self.node._meta_data
|
||||
output_logical_shape = output_meta_data.view(-1, output_meta_data.shape[-1]).shape
|
||||
physical_output = OperationData(name=str(self.node),
|
||||
type=OperationDataType.OUTPUT,
|
||||
data=output_meta_data,
|
||||
logical_shape=output_logical_shape)
|
||||
|
||||
mapping = {"input": physical_input_operand, "other": physical_other_operand, "output": physical_output}
|
||||
|
||||
return mapping
|
||||
|
||||
def post_process(self, strategy: ShardingStrategy) -> Union[ShardingStrategy, List[ShardingStrategy]]:
|
||||
"""
|
||||
Convert the sharding spec from the logical shape to the physical shape.
|
||||
"""
|
||||
# create multiple sharding strategies for the inputs
|
||||
# as input can be multi-dimensinal and the partition dim is only 2D,
|
||||
# we need to map the partition at logical dim 0 to one of the first few dimensions of the input and output
|
||||
strategies = _convert_logical_sharding_to_physical_sharding_spec_for_embedding(strategy=strategy,
|
||||
input_name=str(
|
||||
self.node.args[0]),
|
||||
output_name=str(self.node))
|
||||
return strategies
|
||||
|
||||
|
||||
@operator_registry.register(F.embedding)
|
||||
class EmbeddingFunctionHandler(NodeHandler):
|
||||
"""
|
||||
A EmbeddingFunctionHandler which deals with the sharding strategies for F.embedding.
|
||||
"""
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(EmbeddingStrategyGenerator(op_data_mapping, self.device_mesh))
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
# In F.embedding operation, all the dimensions of input will be treated as the batch dimension,
|
||||
# and then the sharding spec will be generated based on the logical 1D tensor.
|
||||
# After that, the logical sharding info will be enumerated among all the physical dimensions.
|
||||
# Finally, the input will be transformed back to its original shape in self.post_process
|
||||
input_meta_data = self.node.args[0]._meta_data
|
||||
input_logical_shape = input_meta_data.view(-1).shape
|
||||
physical_input_operand = OperationData(name=str(self.node.args[0]),
|
||||
type=OperationDataType.ARG,
|
||||
data=self.node.args[0]._meta_data,
|
||||
logical_shape=input_logical_shape)
|
||||
|
||||
# check if the other operand is a parameter
|
||||
if isinstance(self.node.args[1]._meta_data, torch.nn.parameter.Parameter):
|
||||
data_type = OperationDataType.PARAM
|
||||
else:
|
||||
data_type = OperationDataType.ARG
|
||||
|
||||
physical_other_operand = OperationData(name=str(self.node.args[1]),
|
||||
type=data_type,
|
||||
data=self.node.args[1]._meta_data)
|
||||
|
||||
# Same as input, in F.embedding operation, all the dimensions of output will be treated as
|
||||
# (batch dimension, embedding dimension), and then the sharding spec will be generated based
|
||||
# on the logical 2D tensor.
|
||||
# After that, the logical sharding info of batch dimension will be enumerated among all the physical dimensions.
|
||||
# Finally, the output will be transformed back to its original shape in self.post_process
|
||||
output_meta_data = self.node._meta_data
|
||||
output_logical_shape = output_meta_data.view(-1, output_meta_data.shape[-1]).shape
|
||||
physical_output = OperationData(
|
||||
name=str(self.node),
|
||||
type=OperationDataType.OUTPUT,
|
||||
data=self.node._meta_data,
|
||||
logical_shape=output_logical_shape,
|
||||
)
|
||||
|
||||
mapping = {"input": physical_input_operand, "other": physical_other_operand, "output": physical_output}
|
||||
|
||||
return mapping
|
||||
|
||||
def post_process(self, strategy: ShardingStrategy):
|
||||
"""
|
||||
Convert the sharding spec from the logical shape to the physical shape.
|
||||
"""
|
||||
# create multiple sharding strategies for the inputs
|
||||
# as input can be multi-dimensinal and the partition dim is only 2D,
|
||||
# we need to map the partition at logical dim 0 to one of the first few dimensions of the input and output
|
||||
strategies = _convert_logical_sharding_to_physical_sharding_spec_for_embedding(strategy=strategy,
|
||||
input_name=str(
|
||||
self.node.args[0]),
|
||||
output_name=str(self.node))
|
||||
return strategies
|
|
@ -1,6 +1,7 @@
|
|||
from .batch_norm_generator import BatchNormStrategyGenerator
|
||||
from .binary_elementwise_generator import BinaryElementwiseStrategyGenerator
|
||||
from .conv_strategy_generator import ConvStrategyGenerator
|
||||
from .embedding_generator import EmbeddingStrategyGenerator
|
||||
from .getattr_generator import GetattrGenerator
|
||||
from .getitem_generator import GetItemStrategyGenerator, TensorStrategyGenerator, TensorTupleStrategyGenerator
|
||||
from .layer_norm_generator import LayerNormGenerator
|
||||
|
@ -25,5 +26,5 @@ __all__ = [
|
|||
'BatchNormStrategyGenerator', 'GetItemStrategyGenerator', 'TensorStrategyGenerator', 'TensorTupleStrategyGenerator',
|
||||
'LayerNormGenerator', 'ReshapeGenerator', 'PlaceholderGenerator', 'OutputGenerator', 'WhereGenerator',
|
||||
'ReshapeGenerator', 'NormalPoolStrategyGenerator', 'BinaryElementwiseStrategyGenerator', 'GetattrGenerator',
|
||||
'TensorConstructorGenerator'
|
||||
'TensorConstructorGenerator', 'EmbeddingStrategyGenerator'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,310 @@
|
|||
import copy
|
||||
import operator
|
||||
import warnings
|
||||
from functools import reduce
|
||||
from typing import List
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
CommAction,
|
||||
CommType,
|
||||
MemoryCost,
|
||||
ShardingStrategy,
|
||||
TrainCycleItem,
|
||||
)
|
||||
from colossalai.auto_parallel.tensor_shard.utils import ignore_sharding_exception
|
||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
||||
|
||||
from .strategy_generator import StrategyGenerator
|
||||
|
||||
|
||||
class EmbeddingStrategyGenerator(StrategyGenerator):
|
||||
"""
|
||||
EmbeddingStrategyGenerator is a generic class to generate strategies for nn.Embedding or F.embedding.
|
||||
The operation data is defined as `output = input x other`.
|
||||
"""
|
||||
|
||||
def validate(self) -> bool:
|
||||
return super().validate()
|
||||
|
||||
def update_compute_cost(self, strategy: ShardingStrategy):
|
||||
'''
|
||||
Compute the computation cost per device with this specific strategy.
|
||||
|
||||
Note: The computation cost for the embedding handler is estimated as dense computing now.
|
||||
It may not be accurate.
|
||||
'''
|
||||
# TODO: estimate the embedding computation cost as sparse operation
|
||||
sharded_input_shape = strategy.sharding_specs[self.op_data['input']].get_sharded_shape_per_device()
|
||||
sharded_other_shape = strategy.sharding_specs[self.op_data['other']].get_sharded_shape_per_device()
|
||||
sharded_output_shape = strategy.sharding_specs[self.op_data['output']].get_sharded_shape_per_device()
|
||||
|
||||
input_size_product = reduce(operator.mul, sharded_input_shape)
|
||||
other_size_product = reduce(operator.mul, sharded_other_shape)
|
||||
output_size_product = reduce(operator.mul, sharded_output_shape)
|
||||
|
||||
forward_compute_cost = input_size_product * other_size_product
|
||||
|
||||
backward_activation_cost = other_size_product * output_size_product / sharded_output_shape[-1]
|
||||
backward_weight_cost = input_size_product * other_size_product
|
||||
backward_compute_cost = backward_weight_cost + backward_activation_cost
|
||||
|
||||
total_compute_cost = forward_compute_cost + backward_compute_cost
|
||||
|
||||
compute_cost = TrainCycleItem(fwd=forward_compute_cost, bwd=backward_compute_cost, total=total_compute_cost)
|
||||
strategy.compute_cost = compute_cost
|
||||
|
||||
def update_memory_cost(self, strategy: ShardingStrategy):
|
||||
forward_size_mapping = {
|
||||
'input': self._compute_size_in_bytes(strategy, "input"),
|
||||
'other': self._compute_size_in_bytes(strategy, "other"),
|
||||
'output': self._compute_size_in_bytes(strategy, "output")
|
||||
}
|
||||
|
||||
backward_size_mapping = copy.deepcopy(forward_size_mapping)
|
||||
backward_size_mapping.pop("output")
|
||||
# compute fwd cost incurred
|
||||
# fwd_cost = input + other + output
|
||||
fwd_activation_cost = sum([v for k, v in forward_size_mapping.items() if not self.is_param(k)])
|
||||
fwd_parameter_cost = sum([v for k, v in forward_size_mapping.items() if self.is_param(k)])
|
||||
fwd_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=fwd_parameter_cost)
|
||||
|
||||
# compute bwd cost incurred
|
||||
# bwd_cost = input_grad + other_grad
|
||||
bwd_activation_cost = sum([v for k, v in backward_size_mapping.items() if not self.is_param(k)])
|
||||
bwd_parameter_cost = sum([v for k, v in backward_size_mapping.items() if self.is_param(k)])
|
||||
bwd_mem_cost = MemoryCost(activation=bwd_activation_cost, parameter=bwd_parameter_cost)
|
||||
|
||||
# compute total cost
|
||||
total_mem_cost = MemoryCost(activation=fwd_activation_cost + bwd_activation_cost,
|
||||
parameter=fwd_parameter_cost + bwd_parameter_cost)
|
||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||
strategy.memory_cost = memory_cost
|
||||
|
||||
@ignore_sharding_exception
|
||||
def non_split(self):
|
||||
name = f'RR = R x RR'
|
||||
|
||||
dim_partition_dict_mapping = {
|
||||
"input": {},
|
||||
"other": {},
|
||||
"output": {},
|
||||
}
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
return self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping={})
|
||||
|
||||
@ignore_sharding_exception
|
||||
def split_input(self, mesh_dim_0):
|
||||
name = f'S{mesh_dim_0}R = S{mesh_dim_0} x RR'
|
||||
|
||||
dim_partition_dict_mapping = {
|
||||
"input": {
|
||||
0: [mesh_dim_0]
|
||||
},
|
||||
"other": {},
|
||||
"output": {
|
||||
0: [mesh_dim_0],
|
||||
},
|
||||
}
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
communication_action_mapping = {}
|
||||
if self.is_param("other"):
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_0,
|
||||
comm_type=CommType.HOOK)
|
||||
|
||||
else:
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_0,
|
||||
comm_type=CommType.BEFORE,
|
||||
arg_index=1)
|
||||
|
||||
communication_action_mapping["other"] = other_comm_action
|
||||
|
||||
return self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
@ignore_sharding_exception
|
||||
def split_input_and_embedding_dim(self, mesh_dim_0, mesh_dim_1):
|
||||
name = f'S{mesh_dim_0}S{mesh_dim_1} = S{mesh_dim_0} x RS{mesh_dim_1}'
|
||||
|
||||
dim_partition_dict_mapping = {
|
||||
"input": {
|
||||
0: [mesh_dim_0],
|
||||
},
|
||||
"other": {
|
||||
1: [mesh_dim_1],
|
||||
},
|
||||
"output": {
|
||||
0: [mesh_dim_0],
|
||||
1: [mesh_dim_1],
|
||||
},
|
||||
}
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# set communication action
|
||||
input_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["input"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_1,
|
||||
comm_type=CommType.BEFORE,
|
||||
arg_index=0)
|
||||
communication_action_mapping = {"input": input_comm_action}
|
||||
|
||||
if self.is_param("other"):
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_0,
|
||||
comm_type=CommType.HOOK)
|
||||
|
||||
else:
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_0,
|
||||
comm_type=CommType.BEFORE,
|
||||
arg_index=1)
|
||||
|
||||
communication_action_mapping["other"] = other_comm_action
|
||||
|
||||
return self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
@ignore_sharding_exception
|
||||
def split_1d_parallel_on_input(self, mesh_dim_0, mesh_dim_1):
|
||||
name = f'S{mesh_dim_0}{mesh_dim_1}R = S{mesh_dim_0}{mesh_dim_1} x RR'
|
||||
|
||||
dim_partition_dict_mapping = {
|
||||
"input": {
|
||||
0: [mesh_dim_0, mesh_dim_1]
|
||||
},
|
||||
"other": {},
|
||||
"output": {
|
||||
0: [mesh_dim_0, mesh_dim_1],
|
||||
},
|
||||
}
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# set communication action
|
||||
communication_action_mapping = {}
|
||||
|
||||
if self.is_param("other"):
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=[mesh_dim_0, mesh_dim_1],
|
||||
comm_type=CommType.HOOK)
|
||||
|
||||
else:
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=[mesh_dim_0, mesh_dim_1],
|
||||
comm_type=CommType.BEFORE,
|
||||
arg_index=1)
|
||||
|
||||
communication_action_mapping["other"] = other_comm_action
|
||||
|
||||
return self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
@ignore_sharding_exception
|
||||
def split_embedding_dim(self, mesh_dim_0):
|
||||
name = f'RS{mesh_dim_0} = R x RS{mesh_dim_0}'
|
||||
|
||||
dim_partition_dict_mapping = {
|
||||
"input": {},
|
||||
"other": {
|
||||
1: [mesh_dim_0],
|
||||
},
|
||||
"output": {
|
||||
1: [mesh_dim_0],
|
||||
},
|
||||
}
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# set communication action
|
||||
input_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["input"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_0,
|
||||
comm_type=CommType.BEFORE,
|
||||
arg_index=0)
|
||||
|
||||
communication_action_mapping = {"input": input_comm_action}
|
||||
|
||||
return self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
@ignore_sharding_exception
|
||||
def split_1d_parallel_on_embedding_dim(self, mesh_dim_0, mesh_dim_1):
|
||||
name = f'RS{mesh_dim_0}{mesh_dim_1} = R x RS{mesh_dim_0}{mesh_dim_1}'
|
||||
|
||||
dim_partition_dict_mapping = {
|
||||
"input": {},
|
||||
"other": {
|
||||
1: [mesh_dim_0, mesh_dim_1],
|
||||
},
|
||||
"output": {
|
||||
1: [mesh_dim_0, mesh_dim_1],
|
||||
},
|
||||
}
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# set communication action
|
||||
input_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["input"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=[mesh_dim_0, mesh_dim_1],
|
||||
comm_type=CommType.BEFORE,
|
||||
arg_index=0)
|
||||
|
||||
communication_action_mapping = {"input": input_comm_action}
|
||||
|
||||
return self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
def collate_strategies(self) -> List[ShardingStrategy]:
|
||||
strategies = []
|
||||
|
||||
# RR= R x RR
|
||||
strategies.append(self.non_split())
|
||||
|
||||
# SR = S x RR
|
||||
strategies.append(self.split_input(0))
|
||||
strategies.append(self.split_input(1))
|
||||
|
||||
# SS = S x RS
|
||||
strategies.append(self.split_input_and_embedding_dim(0, 1))
|
||||
strategies.append(self.split_input_and_embedding_dim(1, 0))
|
||||
|
||||
# S01R = S01 x RR
|
||||
strategies.append(self.split_1d_parallel_on_input(0, 1))
|
||||
|
||||
# RS = R x RS
|
||||
strategies.append(self.split_embedding_dim(0))
|
||||
strategies.append(self.split_embedding_dim(1))
|
||||
|
||||
# RS01 = R x RS01
|
||||
strategies.append(self.split_1d_parallel_on_embedding_dim(0, 1))
|
||||
|
||||
return strategies
|
|
@ -0,0 +1,286 @@
|
|||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler.embedding_handler import (
|
||||
EmbeddingFunctionHandler,
|
||||
EmbeddingModuleHandler,
|
||||
)
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
|
||||
|
||||
NUM_EMBEDDINGS = 16
|
||||
EMBEDDING_DIMS = 32
|
||||
|
||||
|
||||
class EmbeddingModule(nn.Module):
|
||||
|
||||
def __init__(self, num_embeddings, embedding_dims):
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(num_embeddings, embedding_dims)
|
||||
|
||||
def forward(self, input):
|
||||
x = self.embedding(input)
|
||||
return x
|
||||
|
||||
|
||||
def check_embedding_module_handler(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = EmbeddingModule(num_embeddings=NUM_EMBEDDINGS, embedding_dims=EMBEDDING_DIMS).cuda()
|
||||
# graph():
|
||||
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
||||
# %embedding : [#users=1] = call_module[target=embedding](args = (%input_1,), kwargs = {})
|
||||
# return embedding
|
||||
input = torch.rand(4, 16, 16) * NUM_EMBEDDINGS
|
||||
input = input.to(torch.int64).cuda()
|
||||
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# index of embedding node in computation graph
|
||||
node_index = 1
|
||||
# total number of embedding strategies
|
||||
strategy_number = 19
|
||||
numerical_test_for_node_strategy(model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=[input],
|
||||
meta_arg_names=['input'])
|
||||
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model, meta_args={"input": torch.rand(4, 16, 16).to('meta')})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
embedding_node = list(graph.nodes)[1]
|
||||
strategies_vector = StrategiesVector(embedding_node)
|
||||
|
||||
# build handler
|
||||
handler = EmbeddingModuleHandler(node=embedding_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
|
||||
# check operation data mapping
|
||||
mapping = handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.logical_shape is not None
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "input_1"
|
||||
# assert mapping['input'].data.is_meta
|
||||
assert mapping['input'].data.shape == torch.Size([4, 16, 16])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([1024])
|
||||
|
||||
assert mapping['other'].name == "weight"
|
||||
assert mapping['other'].data.shape == torch.Size([NUM_EMBEDDINGS, EMBEDDING_DIMS])
|
||||
assert mapping['other'].type == OperationDataType.PARAM
|
||||
assert mapping['other'].logical_shape == torch.Size([NUM_EMBEDDINGS, EMBEDDING_DIMS])
|
||||
|
||||
assert mapping['output'].name == "embedding"
|
||||
assert mapping['output'].data.shape == torch.Size([4, 16, 16, EMBEDDING_DIMS])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
assert mapping['output'].logical_shape == torch.Size([1024, EMBEDDING_DIMS])
|
||||
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# RR = RR x RR
|
||||
assert 'RR = R x RR' in strategy_name_list
|
||||
|
||||
# SR = SR x RR
|
||||
assert 'S0R = S0 x RR_0' in strategy_name_list
|
||||
assert 'S0R = S0 x RR_1' in strategy_name_list
|
||||
assert 'S0R = S0 x RR_2' in strategy_name_list
|
||||
assert 'S1R = S1 x RR_0' in strategy_name_list
|
||||
assert 'S1R = S1 x RR_1' in strategy_name_list
|
||||
assert 'S1R = S1 x RR_2' in strategy_name_list
|
||||
|
||||
# SS = SR x RS
|
||||
assert 'S0S1 = S0 x RS1_0' in strategy_name_list
|
||||
assert 'S0S1 = S0 x RS1_1' in strategy_name_list
|
||||
assert 'S0S1 = S0 x RS1_2' in strategy_name_list
|
||||
assert 'S1S0 = S1 x RS0_0' in strategy_name_list
|
||||
assert 'S1S0 = S1 x RS0_1' in strategy_name_list
|
||||
assert 'S1S0 = S1 x RS0_2' in strategy_name_list
|
||||
|
||||
# RS= RR x RS
|
||||
assert 'RS0 = R x RS0' in strategy_name_list
|
||||
assert 'RS1 = R x RS1' in strategy_name_list
|
||||
|
||||
# S01R = S01R x RR
|
||||
assert 'S01R = S01 x RR_0' in strategy_name_list
|
||||
assert 'S01R = S01 x RR_1' in strategy_name_list
|
||||
assert 'S01R = S01 x RR_2' in strategy_name_list
|
||||
|
||||
# RS01 = RR x RS01
|
||||
assert 'RS01 = R x RS01' in strategy_name_list
|
||||
|
||||
for strategy in strategies_vector:
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name('input_1')
|
||||
weight_sharding_spec = strategy.get_sharding_spec_by_name('weight')
|
||||
output_sharding_spec = strategy.get_sharding_spec_by_name('embedding')
|
||||
|
||||
# make sure the sharding matches across different operation data
|
||||
assert output_sharding_spec.sharding_sequence[-1] == weight_sharding_spec.sharding_sequence[-1]
|
||||
assert input_sharding_spec.sharding_sequence == output_sharding_spec.sharding_sequence[:-1]
|
||||
|
||||
|
||||
class EmbeddingFunction(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, input, others):
|
||||
x = nn.functional.embedding(input, others)
|
||||
return x
|
||||
|
||||
|
||||
def check_embedding_function_handler(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = EmbeddingFunction().cuda()
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
input = torch.rand(4, 16, 16) * NUM_EMBEDDINGS
|
||||
input = input.to(torch.int64).cuda()
|
||||
others = torch.rand(NUM_EMBEDDINGS, EMBEDDING_DIMS).cuda()
|
||||
input_args = [input, others]
|
||||
meta_arg_names = ['input', 'others']
|
||||
input_kwargs = {}
|
||||
# total number of embedding strategies
|
||||
strategy_number = 19
|
||||
node_index = 2
|
||||
numerical_test_for_node_strategy(model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=input_args,
|
||||
meta_arg_names=meta_arg_names,
|
||||
input_kwargs=input_kwargs)
|
||||
tracer = ColoTracer()
|
||||
# graph():
|
||||
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
||||
# %others : torch.Tensor [#users=1] = placeholder[target=others]
|
||||
# %embedding : [#users=1] = call_function[target=torch.nn.functional.embedding](args = (%input_1, %others), kwargs = {padding_idx: None, max_norm: None, norm_type: 2.0, scale_grad_by_freq: False, sparse: False})
|
||||
# return embedding
|
||||
meta_args = {
|
||||
"input": torch.rand(4, 16, 16).to('meta'),
|
||||
"others": torch.rand(NUM_EMBEDDINGS, EMBEDDING_DIMS).to('meta')
|
||||
}
|
||||
graph = tracer.trace(model, meta_args=meta_args)
|
||||
gm = ColoGraphModule(model, graph)
|
||||
|
||||
embedding_node = list(graph.nodes)[2]
|
||||
strategies_vector = StrategiesVector(embedding_node)
|
||||
|
||||
# build handler
|
||||
handler = EmbeddingFunctionHandler(node=embedding_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=strategies_vector)
|
||||
|
||||
# check operation data mapping
|
||||
mapping = handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.logical_shape is not None
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "input_1"
|
||||
assert mapping['input'].data.is_meta
|
||||
assert mapping['input'].data.shape == torch.Size([4, 16, 16])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([1024])
|
||||
|
||||
assert mapping['other'].name == "others"
|
||||
assert mapping['other'].data.is_meta
|
||||
assert mapping['other'].data.shape == torch.Size([NUM_EMBEDDINGS, EMBEDDING_DIMS])
|
||||
assert mapping['other'].type == OperationDataType.ARG
|
||||
assert mapping['other'].logical_shape == torch.Size([NUM_EMBEDDINGS, EMBEDDING_DIMS])
|
||||
|
||||
assert mapping['output'].name == "embedding"
|
||||
assert mapping['output'].data.is_meta
|
||||
assert mapping['output'].data.shape == torch.Size([4, 16, 16, EMBEDDING_DIMS])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
assert mapping['output'].logical_shape == torch.Size([1024, EMBEDDING_DIMS])
|
||||
|
||||
handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# RR = RR x RR
|
||||
assert 'RR = R x RR' in strategy_name_list
|
||||
|
||||
# SR = SR x RR
|
||||
assert 'S0R = S0 x RR_0' in strategy_name_list
|
||||
assert 'S0R = S0 x RR_1' in strategy_name_list
|
||||
assert 'S0R = S0 x RR_2' in strategy_name_list
|
||||
assert 'S1R = S1 x RR_0' in strategy_name_list
|
||||
assert 'S1R = S1 x RR_1' in strategy_name_list
|
||||
assert 'S1R = S1 x RR_2' in strategy_name_list
|
||||
|
||||
# SS = SR x RS
|
||||
assert 'S0S1 = S0 x RS1_0' in strategy_name_list
|
||||
assert 'S0S1 = S0 x RS1_1' in strategy_name_list
|
||||
assert 'S0S1 = S0 x RS1_2' in strategy_name_list
|
||||
assert 'S1S0 = S1 x RS0_0' in strategy_name_list
|
||||
assert 'S1S0 = S1 x RS0_1' in strategy_name_list
|
||||
assert 'S1S0 = S1 x RS0_2' in strategy_name_list
|
||||
|
||||
# RS= RR x RS
|
||||
assert 'RS0 = R x RS0' in strategy_name_list
|
||||
assert 'RS1 = R x RS1' in strategy_name_list
|
||||
|
||||
# S01R = S01R x RR
|
||||
assert 'S01R = S01 x RR_0' in strategy_name_list
|
||||
assert 'S01R = S01 x RR_1' in strategy_name_list
|
||||
assert 'S01R = S01 x RR_2' in strategy_name_list
|
||||
|
||||
# RS01 = RR x RS01
|
||||
assert 'RS01 = R x RS01' in strategy_name_list
|
||||
|
||||
for strategy in strategies_vector:
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name('input_1')
|
||||
weight_sharding_spec = strategy.get_sharding_spec_by_name('others')
|
||||
output_sharding_spec = strategy.get_sharding_spec_by_name('embedding')
|
||||
|
||||
# make sure the sharding matches across different operation data
|
||||
assert output_sharding_spec.sharding_sequence[-1] == weight_sharding_spec.sharding_sequence[-1]
|
||||
assert input_sharding_spec.sharding_sequence == output_sharding_spec.sharding_sequence[:-1]
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_embedding_module_handler():
|
||||
world_size = 4
|
||||
run_func = partial(check_embedding_module_handler, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_embedding_function_handler():
|
||||
world_size = 4
|
||||
run_func = partial(check_embedding_function_handler, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_embedding_module_handler()
|
||||
test_embedding_function_handler()
|
|
@ -13,7 +13,7 @@ from colossalai.auto_parallel.tensor_shard.solver.solver import Solver
|
|||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.tensor.shape_consistency import to_global
|
||||
from colossalai.testing.comparison import assert_close, assert_close_loose
|
||||
from colossalai.testing.comparison import assert_close
|
||||
|
||||
|
||||
def _build_model_to_compare(model: torch.nn.Module, input_args: List[torch.Tensor],
|
||||
|
@ -32,8 +32,12 @@ def _build_model_to_compare(model: torch.nn.Module, input_args: List[torch.Tenso
|
|||
param.register_hook(hook_fn)
|
||||
|
||||
arg_to_compare = copy.deepcopy(input_tensor)
|
||||
arg_to_compare.requires_grad = True
|
||||
wrapper(arg_to_compare, arg_index)
|
||||
|
||||
# only Tensors of floating point and complex dtype can require gradients
|
||||
if arg_to_compare.dtype != torch.int64:
|
||||
arg_to_compare.requires_grad = True
|
||||
wrapper(arg_to_compare, arg_index)
|
||||
|
||||
args_to_compare.append(arg_to_compare)
|
||||
|
||||
for name, input_kwarg in input_kwargs.items():
|
||||
|
@ -46,8 +50,12 @@ def _build_model_to_compare(model: torch.nn.Module, input_args: List[torch.Tenso
|
|||
param.register_hook(hook_fn)
|
||||
|
||||
kwarg_to_compare = copy.deepcopy(input_kwarg)
|
||||
kwarg_to_compare.requires_grad = True
|
||||
wrapper(kwarg_to_compare, name)
|
||||
|
||||
# only Tensors of floating point and complex dtype can require gradients
|
||||
if kwarg_to_compare.dtype != torch.int64:
|
||||
kwarg_to_compare.requires_grad = True
|
||||
wrapper(kwarg_to_compare, name)
|
||||
|
||||
kwargs_to_compare[name] = kwarg_to_compare
|
||||
|
||||
return model_to_compare, args_to_compare, kwargs_to_compare
|
||||
|
@ -160,7 +168,6 @@ def assert_close_helper(first: torch.Tensor,
|
|||
"""
|
||||
This method is used to check whether the average difference between two tensors is as close as expected.
|
||||
"""
|
||||
# average_diff_tensor = ((first - second)/(second+0.1)).sum()/second.numel()
|
||||
try:
|
||||
if isinstance(first, (tuple, list)):
|
||||
for first_element, second_element in zip(first, second):
|
||||
|
|
Loading…
Reference in New Issue