[Gemini] clean no used MemTraceOp (#1970)

pull/1972/head
Jiarui Fang 2 years ago committed by GitHub
parent 7c7921f71b
commit 7e24b9b9ee
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,4 +1,3 @@
from .utils import register_ophooks_recursively, BaseOpHook
from ._memtracer_ophook import MemTracerOpHook
from .utils import BaseOpHook, register_ophooks_recursively
__all__ = ["BaseOpHook", "MemTracerOpHook", "register_ophooks_recursively"]
__all__ = ["BaseOpHook", "register_ophooks_recursively"]

@ -1,117 +0,0 @@
import json
import pickle
from pathlib import Path
from colossalai.context.parallel_mode import ParallelMode
import torch
from colossalai.gemini.ophooks import BaseOpHook
from colossalai.registry import OPHOOKS
from colossalai.logging import get_dist_logger
from colossalai.core import global_context as gpc
from typing import Union
import math
@OPHOOKS.register_module
class MemTracerOpHook(BaseOpHook):
"""
Collect GPU memory usage information
Args:
warmup (int): This parameter indicates how many iterations to truncate before profiling, defaults to 50.
refreshrate (int): This parameter decides the frequency of write file, defaults to 10.
data_prefix (string): The prefix of the stats data file, defaults to "memstats".
"""
def __init__(self, warmup: int = 50, refreshrate: int = 10, data_prefix: str = "memstats"):
from colossalai.gemini.memory_tracer import AsyncMemoryMonitor
super().__init__()
self.async_mem_monitor = AsyncMemoryMonitor()
self._curiter = 0
self._logger = get_dist_logger()
self._count = 0
self._warmup = warmup
self._refreshrate = refreshrate
self._data_prefix = data_prefix
# in distributed environment
if gpc.is_initialized(ParallelMode.GLOBAL):
self._rank = gpc.get_global_rank()
else:
self._rank = 0
def _isvalid(self, module) -> bool:
assert isinstance(module, torch.nn.Module)
return module.training
def _resample(self):
# calculate the average iteration time
total_time = (self.async_mem_monitor.time_stamps[-1] - self.async_mem_monitor.time_stamps[0])
avg_it_time = total_time / self.warmup
self._logger.debug(f"total time for {self.warmup} iterations is {total_time}s")
# adjust the sampling power
power: int = round(-math.log(avg_it_time, 10)) + 1
self._logger.debug(f"the power is {power}")
self.async_mem_monitor.set_interval(power)
@property
def refreshrate(self) -> int:
return self._refreshrate
@property
def warmup(self) -> int:
return self._warmup
@property
def curiter(self) -> int:
return self._curiter
@property
def valid_iter(self) -> int:
return self.curiter - self.warmup
def pre_fwd_exec(self, module: torch.nn.Module, *args):
if self._isvalid(module):
self.async_mem_monitor.finish()
self.async_mem_monitor.start()
def post_fwd_exec(self, module: torch.nn.Module, *args):
if self._isvalid(module):
self.async_mem_monitor.finish()
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
if self._isvalid(module):
self.async_mem_monitor.finish()
self.async_mem_monitor.start()
def post_bwd_exec(self, module: torch.nn.Module, input):
if self._isvalid(module):
self.async_mem_monitor.finish()
def pre_iter(self):
pass
def post_iter(self):
self.async_mem_monitor.finish()
# in the warmup stage
if self.curiter < self.warmup:
pass
# adjust the sampling rate
elif self.curiter == self.warmup:
# use adaptive sample rate
self._resample()
# record data to log file
else:
# every `refreshrate` times, refresh the file
if self.valid_iter != 0 and self.valid_iter % self.refreshrate == 0:
# output file info
self._logger.info(f"dump a memory statistics as pickle to {self._data_prefix}-{self._rank}.pkl")
home_dir = Path.home()
with open(home_dir.joinpath(f".cache/colossal/mem-{self._rank}.pkl"), "wb") as f:
pickle.dump(self.async_mem_monitor.state_dict, f)
self._count += 1
self._logger.debug(f"data file has been refreshed {self._count} times")
# finish a iteration
self._curiter += 1
def save_results(self, data_file: Union[str, Path]):
with open(data_file, "w") as f:
f.write(json.dumps(self.async_mem_monitor.state_dict))

@ -1,48 +0,0 @@
from pathlib import Path
from typing import Union
from colossalai.engine import Engine
from torch.utils.tensorboard import SummaryWriter
from colossalai.gemini.ophooks import MemTracerOpHook
from colossalai.utils.profiler.legacy.prof_utils import BaseProfiler
class MemProfiler(BaseProfiler):
"""Wraper of MemOpHook, used to show GPU memory usage through each iteration
To use this profiler, you need to pass an `engine` instance. And the usage is same like
CommProfiler.
Usage::
mm_prof = MemProfiler(engine)
with ProfilerContext([mm_prof]) as prof:
writer = SummaryWriter("mem")
engine.train()
...
prof.to_file("./log")
prof.to_tensorboard(writer)
"""
def __init__(self, engine: Engine, warmup: int = 50, refreshrate: int = 10) -> None:
super().__init__(profiler_name="MemoryProfiler", priority=0)
self._mem_tracer = MemTracerOpHook(warmup=warmup, refreshrate=refreshrate)
self._engine = engine
def enable(self) -> None:
self._engine.add_hook(self._mem_tracer)
def disable(self) -> None:
self._engine.remove_hook(self._mem_tracer)
def to_tensorboard(self, writer: SummaryWriter) -> None:
stats = self._mem_tracer.async_mem_monitor.state_dict['mem_stats']
for info, i in enumerate(stats):
writer.add_scalar("memory_usage/GPU", info, i)
def to_file(self, data_file: Path) -> None:
self._mem_tracer.save_results(data_file)
def show(self) -> None:
stats = self._mem_tracer.async_mem_monitor.state_dict['mem_stats']
print(stats)
Loading…
Cancel
Save