mirror of https://github.com/hpcaitech/ColossalAI
[gemini] gemini mgr supports "cpu" placement policy (#1118)
* update gemini mgr * update chunk * add docstr * polish placement policy * update test chunk * update test zero * polish unit test * remove useless unit testpull/1120/head
parent
f99f56dff4
commit
7d14b473f0
|
@ -1,4 +1,4 @@
|
|||
import functools
|
||||
import torch
|
||||
from .memory_tracer.memstats_collector import MemStatsCollectorV2
|
||||
from typing import List, Optional, Tuple
|
||||
from time import time
|
||||
|
@ -15,8 +15,6 @@ class GeminiManager:
|
|||
"""
|
||||
|
||||
def __init__(self, placement_policy: str, chunk_manager: ChunkManager) -> None:
|
||||
# TODO: remove assert
|
||||
assert placement_policy == 'cuda', 'placement_policy can only be "cuda" now'
|
||||
assert placement_policy in PlacementPolicyFactory.get_polocy_names()
|
||||
policy_cls = PlacementPolicyFactory.create(placement_policy)
|
||||
self._chunk_manager = chunk_manager
|
||||
|
@ -111,3 +109,7 @@ class GeminiManager:
|
|||
@property
|
||||
def is_cuda_margin_mem_avail(self) -> bool:
|
||||
return self._placement_policy.need_mem_stats
|
||||
|
||||
@staticmethod
|
||||
def get_default_device(policy_name: str) -> torch.device:
|
||||
return PlacementPolicyFactory.get_default_device(policy_name)
|
||||
|
|
|
@ -34,10 +34,11 @@ class CPUPlacementPolicy(PlacementPolicy):
|
|||
|
||||
def evict_tensors(self, can_evict_chunks: List[Chunk], **kwargs) -> int:
|
||||
volume = 0
|
||||
start = time()
|
||||
for chunk in can_evict_chunks:
|
||||
self.chunk_manager.move_chunk(chunk, torch.device('cpu'))
|
||||
self.chunk_manager.move_chunk(chunk, torch.device('cpu'), update_ptr=False)
|
||||
volume += chunk.mem
|
||||
return volume, 0
|
||||
return volume, time() - start
|
||||
|
||||
|
||||
class CUDAPlacementPolicy(PlacementPolicy):
|
||||
|
@ -115,7 +116,7 @@ class AutoPlacementPolicy(PlacementPolicy):
|
|||
if freed_cuda_model_data >= to_free_cuda_model_data:
|
||||
break
|
||||
freed_cuda_model_data += chunk.mem
|
||||
self.chunk_manager.move_chunk(chunk, torch.device('cpu'))
|
||||
self.chunk_manager.move_chunk(chunk, torch.device('cpu'), update_ptr=False)
|
||||
if freed_cuda_model_data < to_free_cuda_model_data:
|
||||
raise RuntimeError(
|
||||
f"Adjust layout failed! No enough CUDA memory! Need {to_free_cuda_model_data}, freed {freed_cuda_model_data}"
|
||||
|
|
|
@ -100,6 +100,8 @@ class ColoDDPV2(ColoDDP):
|
|||
self.fp32_params = []
|
||||
self.overflow_counter = 0
|
||||
self.grads_device: Dict[torch.Tensor, torch.device] = {}
|
||||
self.chunk_manager.create_group('fp16_param', force_data_on_cuda=True)
|
||||
self.chunk_manager.create_group('fp32_param')
|
||||
# TODO: get param order and filter unused params
|
||||
for p in module.parameters():
|
||||
assert p.dtype == torch.half
|
||||
|
|
|
@ -36,8 +36,21 @@ class ChunkFullError(Exception):
|
|||
pass
|
||||
|
||||
|
||||
class Chunk:
|
||||
def is_storage_empty(tensor: torch.Tensor) -> bool:
|
||||
return tensor.storage().size() == 0
|
||||
|
||||
|
||||
def free_storage(tensor: torch.Tensor) -> None:
|
||||
if not is_storage_empty(tensor):
|
||||
tensor.storage().resize_(0)
|
||||
|
||||
|
||||
def alloc_storage(tensor: torch.Tensor) -> None:
|
||||
if is_storage_empty(tensor):
|
||||
tensor.storage().resize_(tensor.numel())
|
||||
|
||||
|
||||
class Chunk:
|
||||
"""
|
||||
A chunk is a contiguous memory space which contains multiple tensors.
|
||||
|
||||
|
@ -46,25 +59,36 @@ class Chunk:
|
|||
src_rank (int): the process which owns the chunk
|
||||
dtype (torch.dtype): the data type of the chunk
|
||||
init_device (torch.device): optional, the device where the tensor is initialized. The default value is None, which is the current GPU.
|
||||
force_data_on_cuda (bool): optional, if True, chunk.data is always on cuda. Defaults to False.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
chunk_size: int,
|
||||
src_rank: int,
|
||||
dtype: torch.dtype,
|
||||
init_device: Optional[torch.device] = None) -> None:
|
||||
init_device: Optional[torch.device] = None,
|
||||
force_data_on_cuda: bool = False) -> None:
|
||||
self.size = chunk_size
|
||||
self.utilized_size = 0
|
||||
self.src_rank = src_rank
|
||||
self.is_src_rank = gpc.get_local_rank(ParallelMode.DATA) == src_rank
|
||||
self.global_src_rank = gpc.get_ranks_in_group(ParallelMode.DATA)[src_rank]
|
||||
self.dtype = dtype
|
||||
self.device = init_device or get_current_device()
|
||||
self.data = torch.empty(chunk_size, dtype=dtype, device=self.device)
|
||||
device = init_device or get_current_device()
|
||||
if force_data_on_cuda:
|
||||
self.data = torch.empty(chunk_size, dtype=dtype, device=get_current_device())
|
||||
self._cpu_data = torch.empty(chunk_size, dtype=dtype)
|
||||
if device.type == 'cuda':
|
||||
free_storage(self._cpu_data)
|
||||
else:
|
||||
free_storage(self.data)
|
||||
else:
|
||||
self.data = torch.empty(chunk_size, dtype=dtype, device=device)
|
||||
self._cpu_data = None
|
||||
|
||||
# we only keep the chunk in full in the process by which the tensor is owned
|
||||
if not self.is_src_rank:
|
||||
self.data.storage().resize_(0)
|
||||
free_storage(self._payload)
|
||||
|
||||
# each tensor is associated with a TensorInfo to track meta info
|
||||
self.tensors_info: Dict[torch.Tensor, TensorInfo] = {}
|
||||
|
@ -90,9 +114,9 @@ class Chunk:
|
|||
# if the process owns the rank, then copy the tensor to its chunk buffer
|
||||
# otherwise set its storage size to 0 to reduce memory consumption
|
||||
if self.is_src_rank:
|
||||
self.data[self.utilized_size:new_utilized_size].copy_(tensor.view(-1))
|
||||
self._payload[self.utilized_size:new_utilized_size].copy_(tensor.view(-1))
|
||||
tensor_state = TensorState.HOLD
|
||||
tensor.data = self.data[self.utilized_size:new_utilized_size].view(tensor.shape)
|
||||
tensor.data = self._payload[self.utilized_size:new_utilized_size].view(tensor.shape)
|
||||
else:
|
||||
tensor.storage().resize_(0)
|
||||
self.tensors_info[tensor] = TensorInfo(tensor_state, self.utilized_size, new_utilized_size)
|
||||
|
@ -103,12 +127,12 @@ class Chunk:
|
|||
Release the memory space on processes which do not own the chunk.
|
||||
"""
|
||||
if not self.is_src_rank:
|
||||
self.data.storage().resize_(0)
|
||||
free_storage(self._payload)
|
||||
self._update_tensors_state(TensorState.FREE)
|
||||
|
||||
def _update_tensors_ptr(self) -> None:
|
||||
for tensor, tensor_info in self.tensors_info.items():
|
||||
tensor.data = self.data[tensor_info.offset:tensor_info.end].view(tensor.shape)
|
||||
tensor.data = self._payload[tensor_info.offset:tensor_info.end].view(tensor.shape)
|
||||
|
||||
def _update_tensors_state(self, next_state: TensorState, prev_state: Optional[TensorState] = None):
|
||||
for tensor_info in self.tensors_info.values():
|
||||
|
@ -122,8 +146,8 @@ class Chunk:
|
|||
# recover the chunk on non-owner processes
|
||||
# and broadcast the chunk from the source to all processes
|
||||
if not self.is_src_rank:
|
||||
self.data.storage().resize_(self.size)
|
||||
self.data.data = self.data.to(get_current_device())
|
||||
alloc_storage(self._payload)
|
||||
self.move_device(get_current_device(), update_ptr=False)
|
||||
dist.broadcast(self.data, self.global_src_rank, group=gpc.get_group(ParallelMode.DATA))
|
||||
|
||||
# update tensor meta info
|
||||
|
@ -131,14 +155,31 @@ class Chunk:
|
|||
if not self.is_src_rank:
|
||||
self._update_tensors_state(TensorState.HOLD, prev_state=TensorState.FREE)
|
||||
|
||||
def move_device(self, device: torch.device) -> None:
|
||||
def move_device(self, device: torch.device, update_ptr: bool = True) -> None:
|
||||
"""
|
||||
Move the chunk to a target device.
|
||||
|
||||
Args:
|
||||
device (torch.device): the target device for data movement.
|
||||
"""
|
||||
if self._payload.device == device:
|
||||
return
|
||||
if self._cpu_data is None:
|
||||
self.data.data = self.data.to(device)
|
||||
else:
|
||||
if device.type == 'cuda':
|
||||
# cpu -> cuda
|
||||
src = self._cpu_data
|
||||
dest = self.data
|
||||
else:
|
||||
# cuda -> cpu
|
||||
src = self.data
|
||||
dest = self._cpu_data
|
||||
alloc_storage(dest)
|
||||
dest.copy_(src)
|
||||
free_storage(src)
|
||||
|
||||
if update_ptr:
|
||||
self._update_tensors_ptr()
|
||||
|
||||
def reduce(self, is_all_reduce: bool = False) -> None:
|
||||
|
@ -148,7 +189,7 @@ class Chunk:
|
|||
Args:
|
||||
is_all_reduce (bool): optional, whether to all-reduce the chunk. The default is false.
|
||||
"""
|
||||
self.data.data = self.data.to(get_current_device())
|
||||
self.move_device(get_current_device(), update_ptr=False)
|
||||
if is_all_reduce:
|
||||
dist.all_reduce(self.data, group=gpc.get_group(ParallelMode.DATA))
|
||||
else:
|
||||
|
@ -187,8 +228,8 @@ class Chunk:
|
|||
data_slice (torch.Tensor): the tensor to be copied to the chunk
|
||||
"""
|
||||
tensor_info = self.tensors_info[tensor]
|
||||
self.data[tensor_info.offset:tensor_info.end].copy_(data_slice.view(-1))
|
||||
tensor.data = self.data[tensor_info.offset:tensor_info.end].view(tensor.shape)
|
||||
self._payload[tensor_info.offset:tensor_info.end].copy_(data_slice.view(-1))
|
||||
tensor.data = self._payload[tensor_info.offset:tensor_info.end].view(tensor.shape)
|
||||
|
||||
@property
|
||||
def can_release(self) -> bool:
|
||||
|
@ -225,7 +266,7 @@ class Chunk:
|
|||
"""
|
||||
Check whether the chunk is empty.
|
||||
"""
|
||||
return self.data.storage().size() == 0
|
||||
return is_storage_empty(self._payload)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f'Chunk: src rank={self.src_rank} ,size={self.size}, utilization={self.utilized_size/self.size*100:.2f}%, freed={self.is_empty}, tensor states={[info.state.name for info in self.tensors_info.values()]}'
|
||||
|
@ -235,8 +276,8 @@ class Chunk:
|
|||
"""
|
||||
Check if the chunk has inf or nan values.
|
||||
"""
|
||||
return torch.isinf(self.data[:self.utilized_size]).any().item() or \
|
||||
torch.isnan(self.data[:self.utilized_size]).any().item()
|
||||
return torch.isinf(self._payload[:self.utilized_size]).any().item() or \
|
||||
torch.isnan(self._payload[:self.utilized_size]).any().item()
|
||||
|
||||
def copy_(self, dest_chunk: 'Chunk'):
|
||||
"""
|
||||
|
@ -246,7 +287,7 @@ class Chunk:
|
|||
assert not dest_chunk.is_empty
|
||||
assert self.size == dest_chunk.size
|
||||
assert self.utilized_size == dest_chunk.utilized_size
|
||||
self.data.copy_(dest_chunk.data)
|
||||
self._payload.copy_(dest_chunk._payload)
|
||||
self._update_tensors_ptr()
|
||||
|
||||
@property
|
||||
|
@ -254,7 +295,7 @@ class Chunk:
|
|||
"""
|
||||
Get the device type of the chunk.
|
||||
"""
|
||||
return self.data.device.type
|
||||
return self._payload.device.type
|
||||
|
||||
def __hash__(self) -> int:
|
||||
return hash(id(self))
|
||||
|
@ -265,6 +306,12 @@ class Chunk:
|
|||
def get_tensors(self) -> List[torch.Tensor]:
|
||||
return list(self.tensors_info.keys())
|
||||
|
||||
@property
|
||||
def _payload(self) -> torch.Tensor:
|
||||
if self._cpu_data is None or is_storage_empty(self._cpu_data):
|
||||
return self.data
|
||||
return self._cpu_data
|
||||
|
||||
|
||||
class ChunkManager:
|
||||
"""
|
||||
|
@ -285,6 +332,7 @@ class ChunkManager:
|
|||
self.enable_distributed_storage = enable_distributed_storage
|
||||
self.device = init_device or get_current_device()
|
||||
self.chunk_groups: Dict[str, Deque[Chunk]] = {}
|
||||
self.groups_force_data_on_cuda: Dict[str, bool] = {}
|
||||
self.tensor_chunk_map: Dict[torch.Tensor, Chunk] = {}
|
||||
self.accessed_chunks: Set[Chunk] = set()
|
||||
self.lazy_release_tensors: List[torch.Tensor] = []
|
||||
|
@ -292,6 +340,17 @@ class ChunkManager:
|
|||
self.rank_load: Dict[str, torch.Tensor] = {}
|
||||
self.total_mem: Dict[str, int] = {'cpu': 0, 'cuda': 0}
|
||||
|
||||
def create_group(self, group_name: str, force_data_on_cuda: bool = False) -> None:
|
||||
"""Create a chunk group.
|
||||
|
||||
Args:
|
||||
group_name (str): group name
|
||||
force_data_on_cuda (bool, optional): If True, the data of chunks in this group is always on cuda.. Defaults to False.
|
||||
"""
|
||||
assert group_name not in self.chunk_groups
|
||||
self.chunk_groups[group_name] = deque()
|
||||
self.groups_force_data_on_cuda[group_name] = force_data_on_cuda
|
||||
|
||||
def append_tensor(self, tensor: torch.Tensor, group_name: str) -> None:
|
||||
"""
|
||||
Append a tensor to a chunk.
|
||||
|
@ -304,9 +363,6 @@ class ChunkManager:
|
|||
if self.chunk_size is not None and tensor.numel() > self.chunk_size:
|
||||
raise ValueError(
|
||||
f'Cannot create chunk, got tensor numel ({tensor.numel()}) > chunk size ({self.chunk_size})')
|
||||
if group_name not in self.chunk_groups:
|
||||
self.chunk_groups[group_name] = deque()
|
||||
|
||||
try:
|
||||
# append the tensor to the last chunk
|
||||
self.chunk_groups[group_name][-1].append(tensor)
|
||||
|
@ -316,7 +372,11 @@ class ChunkManager:
|
|||
# this will create a new chunk and allocate this chunk to its corresponding process
|
||||
chunk_size = self.chunk_size or tensor.numel()
|
||||
src_rank = self._get_next_src_rank(group_name)
|
||||
chunk = Chunk(chunk_size, src_rank, tensor.dtype, self.device)
|
||||
chunk = Chunk(chunk_size,
|
||||
src_rank,
|
||||
tensor.dtype,
|
||||
self.device,
|
||||
force_data_on_cuda=self.groups_force_data_on_cuda[group_name])
|
||||
|
||||
if self.enable_distributed_storage and self.chunk_size is None:
|
||||
self.rank_load[group_name][src_rank] += chunk_size
|
||||
|
@ -387,7 +447,7 @@ class ChunkManager:
|
|||
# update the memory consumption after releasing
|
||||
self.total_mem[chunk.device_type] -= chunk.mem
|
||||
|
||||
def move_chunk(self, chunk: Chunk, device: torch.device) -> None:
|
||||
def move_chunk(self, chunk: Chunk, device: torch.device, update_ptr: bool = True) -> None:
|
||||
"""
|
||||
Move the chunk to the target device.
|
||||
|
||||
|
@ -399,7 +459,7 @@ class ChunkManager:
|
|||
return
|
||||
if chunk.can_move_device and not chunk.is_empty:
|
||||
self.total_mem[chunk.device_type] -= chunk.mem
|
||||
chunk.move_device(device)
|
||||
chunk.move_device(device, update_ptr=update_ptr)
|
||||
self.total_mem[chunk.device_type] += chunk.mem
|
||||
|
||||
def trans_tensor_state(self, tensor: torch.Tensor, state: TensorState) -> None:
|
||||
|
|
|
@ -44,6 +44,7 @@ def run_chunk_zero(use_chunk, use_zero):
|
|||
params = [torch.rand(8, 8) for _ in range(3)]
|
||||
chunk_size = 128 if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
|
||||
chunk_manager.create_group('param')
|
||||
assert chunk_manager.total_mem['cpu'] == 0
|
||||
assert chunk_manager.total_mem['cuda'] == 0
|
||||
for p in params:
|
||||
|
|
|
@ -1,82 +0,0 @@
|
|||
import pytest
|
||||
import colossalai
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||
from colossalai.tensor import ChunkManager
|
||||
from colossalai.core import global_context as gpc
|
||||
from functools import partial
|
||||
from _utils import tensor_equal, set_seed
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from colossalai.nn.parallel import ColoDDPV2
|
||||
from colossalai.testing import parameterize
|
||||
from colossalai.gemini.gemini_mgr import GeminiManager
|
||||
|
||||
|
||||
def check_param_equal(model, torch_model):
|
||||
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
||||
if p.storage().size() > 0:
|
||||
assert tensor_equal(torch_p, p.float()), f'{torch_p} vs {p}'
|
||||
|
||||
|
||||
def check_grad_equal(model, torch_model):
|
||||
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
||||
if p.grad is not None:
|
||||
assert tensor_equal(torch_p.grad, p.grad.float())
|
||||
|
||||
|
||||
@parameterize('use_chunk', [False, True])
|
||||
@parameterize('use_zero', [False, True])
|
||||
def run_gpt(use_chunk, use_zero):
|
||||
set_seed(42)
|
||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
with ColoInitContext(device=get_current_device()):
|
||||
model = model_builder(checkpoint=True)
|
||||
model = model.cuda()
|
||||
torch_model = model_builder().cuda()
|
||||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||
torch_p.data.copy_(p)
|
||||
model = model.half()
|
||||
chunk_size = 38 * 1024**2 if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
|
||||
gemini_manager = GeminiManager('cuda', chunk_manager)
|
||||
model = ColoDDPV2(model, gemini_manager)
|
||||
torch_model = DDP(torch_model, device_ids=[gpc.get_global_rank()], process_group=gpc.get_group(ParallelMode.DATA))
|
||||
print(chunk_manager)
|
||||
check_param_equal(model, torch_model)
|
||||
model.train()
|
||||
torch_model.train()
|
||||
set_seed(gpc.get_local_rank(ParallelMode.DATA))
|
||||
for i, (input_ids, attn_mask) in enumerate(train_dataloader):
|
||||
logits = model(input_ids, attn_mask)
|
||||
torch_logits = torch_model(input_ids, attn_mask)
|
||||
assert tensor_equal(torch_logits, logits.float())
|
||||
loss = criterion(logits, input_ids)
|
||||
torch_loss = criterion(torch_logits, input_ids)
|
||||
model.backward(loss)
|
||||
torch_loss.backward()
|
||||
check_grad_equal(model, torch_model)
|
||||
break
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_gpt()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_gpt(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_gpt(4)
|
|
@ -25,22 +25,28 @@ def check_param_equal(model, torch_model):
|
|||
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
||||
if p.storage().size() > 0:
|
||||
assert p.dtype == torch.half
|
||||
assert tensor_equal(torch_p, p), f'{torch_p} vs {p}'
|
||||
assert tensor_equal(torch_p.to(dtype=p.dtype, device=p.device), p), f'{torch_p} vs {p}'
|
||||
|
||||
|
||||
def run_step(model, criterion, optimizer, input_ids, attn_mask):
|
||||
def check_grad_equal(model, torch_model):
|
||||
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
||||
if p.grad is not None:
|
||||
assert tensor_equal(torch_p.grad.to(dtype=p.grad.dtype, device=p.grad.device), p.grad)
|
||||
|
||||
|
||||
def run_fwd_bwd(model, criterion, optimizer, input_ids, attn_mask):
|
||||
optimizer.zero_grad()
|
||||
logits = model(input_ids, attn_mask)
|
||||
logits = logits.float()
|
||||
loss = criterion(logits, input_ids)
|
||||
optimizer.backward(loss)
|
||||
optimizer.step()
|
||||
return logits
|
||||
|
||||
|
||||
@parameterize('use_chunk', [False, True])
|
||||
@parameterize('use_zero', [False, True])
|
||||
def run_gpt(use_chunk, use_zero):
|
||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
||||
def run_gpt(use_chunk, use_zero, placement_policy):
|
||||
set_seed(42)
|
||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
@ -52,9 +58,11 @@ def run_gpt(use_chunk, use_zero):
|
|||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||
torch_p.data.copy_(p)
|
||||
|
||||
chunk_size = 38 * 1024**2 if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
|
||||
gemini_manager = GeminiManager('cuda', chunk_manager)
|
||||
chunk_size = ChunkManager.search_chunk_size(model, 8192, 8) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size,
|
||||
enable_distributed_storage=use_zero,
|
||||
init_device=GeminiManager.get_default_device(placement_policy))
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
model = ColoDDPV2(model, gemini_manager)
|
||||
optim = HybridAdam(model.parameters(), lr=1e-3)
|
||||
optim = ZeroOptimizer(optim, model, initial_scale=32)
|
||||
|
@ -64,7 +72,7 @@ def run_gpt(use_chunk, use_zero):
|
|||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
torch_model = DDP(torch_model, device_ids=[gpc.get_global_rank()], process_group=gpc.get_group(ParallelMode.DATA))
|
||||
|
||||
# print(chunk_manager)
|
||||
print(chunk_manager)
|
||||
check_param_equal(model, torch_model)
|
||||
model.train()
|
||||
torch_model.train()
|
||||
|
@ -72,9 +80,12 @@ def run_gpt(use_chunk, use_zero):
|
|||
for i, (input_ids, attn_mask) in enumerate(train_dataloader):
|
||||
if i > 2:
|
||||
break
|
||||
logits = run_step(model, criterion, optim, input_ids, attn_mask)
|
||||
torch_logits = run_step(torch_model, criterion, torch_optim, input_ids, attn_mask)
|
||||
logits = run_fwd_bwd(model, criterion, optim, input_ids, attn_mask)
|
||||
torch_logits = run_fwd_bwd(torch_model, criterion, torch_optim, input_ids, attn_mask)
|
||||
assert tensor_equal(logits, torch_logits)
|
||||
check_grad_equal(model, torch_model)
|
||||
optim.step()
|
||||
torch_optim.step()
|
||||
check_param_equal(model, torch_model)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue