mirror of https://github.com/hpcaitech/ColossalAI
[tensor]build sharding spec to replace distspec in future. (#1405)
parent
12b4887097
commit
7c96055c68
@ -0,0 +1,92 @@
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
||||
|
||||
class _DimSpec:
|
||||
'''
|
||||
Sharding spec for single dimension of the sharded tensor decribe the sharding dimension of
|
||||
logical device mesh and give a method to compute the difference between them.
|
||||
This class is used internally in ShardingSpec.
|
||||
|
||||
Argument:
|
||||
shard_list(List[int]): if shard_list is None, the dim spec will be 'R' type.
|
||||
Otherwise, the element in shard_list means the data will be sharded in that dimension.
|
||||
'''
|
||||
|
||||
def __init__(self, shard_list):
|
||||
self.is_replica = shard_list is None
|
||||
self.shard_list = shard_list
|
||||
|
||||
def __eq__(self, other):
|
||||
if dir(self) != dir(other):
|
||||
return False
|
||||
for attr in dir(self):
|
||||
if not attr.startswith('__') and getattr(self, attr) != getattr(other, attr):
|
||||
return False
|
||||
return True
|
||||
|
||||
def __repr__(self):
|
||||
if self.is_replica:
|
||||
return 'R'
|
||||
target = 'S'
|
||||
for dim in self.shard_list:
|
||||
target += str(dim)
|
||||
return target
|
||||
|
||||
def difference(self, other):
|
||||
'''
|
||||
This function is temporarily NOT implemented, it will be codesigned with ShapeConsistency feature.
|
||||
'''
|
||||
pass
|
||||
|
||||
|
||||
class ShardingSpec:
|
||||
'''
|
||||
Sharding spec for a tensor, it contains info of the logical device mesh this tensor belong
|
||||
to, the entire shape of the tensor before sharded, and the sharding sequence looks like
|
||||
[R, R, S0, S1].
|
||||
|
||||
Argument:
|
||||
device_mesh(DeviceMesh): A logical view of a physical mesh.
|
||||
entire_shape(torch.Size): The entire shape of tensor before sharded.
|
||||
dim_partition_dict(Dict[int, List[int]]): The key is the dimension of tensor to be sharded,
|
||||
and the value of the key decribe which logical axis will be sharded in that dimension.
|
||||
'''
|
||||
|
||||
def __init__(self, device_mesh, entire_shape, dim_partition_dict):
|
||||
self.device_mesh = device_mesh
|
||||
self.entire_shape = entire_shape
|
||||
self.dim_partition_dict = dim_partition_dict
|
||||
self._sanity_check()
|
||||
self.sharding_sequence = self.convert_dict_to_shard_sequence()
|
||||
|
||||
def __repr__(self):
|
||||
res_list = ["DistSpec:"]
|
||||
res_list.append(f"\n\tshard_sequence: " + ",".join(str(dimspec) for dimspec in self.sharding_sequence))
|
||||
res_list.append(f"\n\tdevice_mesh_shape: {self.device_mesh.mesh_shape}")
|
||||
return ' '.join(res_list)
|
||||
|
||||
def _sanity_check(self):
|
||||
'''
|
||||
In sanity check, we need make sure all axes in logical device mesh only be used
|
||||
once.
|
||||
'''
|
||||
dim_check_list = [i for i in range(self.device_mesh.logical_mesh_id.dim())]
|
||||
for dim, shard_list in self.dim_partition_dict.items():
|
||||
for element in shard_list:
|
||||
if element in dim_check_list:
|
||||
dim_check_list.remove(element)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"find an invalid sharding axis {element} in dim_partition_dict in tensor dimension {dim}.")
|
||||
|
||||
def convert_dict_to_shard_sequence(self):
|
||||
sharding_sequence = [_DimSpec(None)] * len(self.entire_shape)
|
||||
for dim, shard_list in self.dim_partition_dict.items():
|
||||
sharding_sequence[dim] = _DimSpec(shard_list)
|
||||
return sharding_sequence
|
||||
|
||||
def sharding_sequence_difference(self, other):
|
||||
'''
|
||||
This function is temporarily NOT implemented, it will be codesigned with ShapeConsistency feature.
|
||||
'''
|
||||
pass
|
@ -0,0 +1,24 @@
|
||||
import torch
|
||||
from colossalai.tensor.sharding_spec import _DimSpec, ShardingSpec
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
||||
|
||||
def test_sharding_spec():
|
||||
physical_mesh_id = torch.arange(0, 16).reshape(2, 8)
|
||||
mesh_shape = (4, 4)
|
||||
# [[0, 1, 2, 3],
|
||||
# [4, 5, 6, 7],
|
||||
# [8, 9, 10,11],
|
||||
# [12,13,14,15]]
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
entire_shape = torch.Size((4, 8, 6))
|
||||
dim_partition_dict = {0: [0, 1]}
|
||||
# DistSpec:
|
||||
# shard_sequence: S01,R,R
|
||||
# device_mesh_shape: (4, 4)
|
||||
sharding_spec = ShardingSpec(device_mesh, entire_shape, dim_partition_dict)
|
||||
assert str(sharding_spec.sharding_sequence) == "[S01, R, R]"
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_sharding_spec()
|
Loading…
Reference in new issue