mirror of https://github.com/hpcaitech/ColossalAI
Remove CohereLayerNorm and use existing layernorm
parent
fe2e74c03a
commit
7a2b08646f
|
@ -4,7 +4,7 @@ from .dropout import DropoutForParallelInput, DropoutForReplicatedInput
|
|||
from .embedding import Embedding1D, PaddingEmbedding, VocabParallelEmbedding1D
|
||||
from .linear import Linear1D_Col, Linear1D_Row, PaddingLMHead, VocabParallelLMHead1D
|
||||
from .loss import cross_entropy_1d
|
||||
from .normalization import CohereLayerNorm, FusedCohereLayerNorm, FusedLayerNorm, FusedRMSNorm, LayerNorm, RMSNorm
|
||||
from .normalization import FusedLayerNorm, FusedRMSNorm, LayerNorm, RMSNorm
|
||||
from .parallel_module import ParallelModule
|
||||
from .qkv_fused_linear import FusedLinear1D_Col, GPT2FusedLinearConv1D_Col, GPT2FusedLinearConv1D_Row
|
||||
|
||||
|
@ -23,8 +23,6 @@ __all__ = [
|
|||
"RMSNorm",
|
||||
"FusedLayerNorm",
|
||||
"FusedRMSNorm",
|
||||
"CohereLayerNorm",
|
||||
"FusedCohereLayerNorm",
|
||||
"FusedLinear1D_Col",
|
||||
"ParallelModule",
|
||||
"PaddingEmbedding",
|
||||
|
|
|
@ -4,7 +4,6 @@ import warnings
|
|||
from abc import ABC, abstractmethod
|
||||
|
||||
import torch.nn as nn
|
||||
from transformers.models.cohere.modeling_cohere import CohereLayerNorm
|
||||
|
||||
from colossalai.lazy import LazyInitContext
|
||||
|
||||
|
@ -141,32 +140,29 @@ class RMSNorm(BaseLayerNorm):
|
|||
|
||||
class LayerNorm(BaseLayerNorm):
|
||||
r"""
|
||||
This is a wrapper around the torch.nn.LayerNorm. It is meant to be used only with the from_native_module interface.
|
||||
This is a wrapper around native LayerNorm. It is meant to be used only with the from_native_module interface.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
raise NotImplementedError(
|
||||
"LayerNorm is not implemented as a physical class. "
|
||||
"It is meant to be used only with the from_native_module interface to convert a native pytorch layer norm module to colossalai layer norm module."
|
||||
"It is meant to be used only with the from_native_module interface to convert a native LayerNorm module to colossalai layer norm module."
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def from_native_module(module: nn.LayerNorm, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module:
|
||||
def from_native_module(module: nn.Module, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module:
|
||||
r"""
|
||||
Convert a native pytorch layer norm module to colossalai layer norm module,
|
||||
Convert a native LayerNorm module to colossalai layer norm module,
|
||||
and optionally marking parameters for gradient aggregation.
|
||||
|
||||
Args:
|
||||
module (nn.LayerNorm): The native PyTorch LayerNorm module to be converted.
|
||||
module (nn.Module): The native LayerNorm module to be converted.
|
||||
sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism.
|
||||
|
||||
Returns:
|
||||
nn.Module: The LayerNorm module.
|
||||
nn.Module: The colossalai LayerNorm module.
|
||||
|
||||
Raises:
|
||||
AssertionError: If the provided module is not an instance of nn.LayerNorm.
|
||||
"""
|
||||
assert isinstance(module, nn.LayerNorm), "Only support conversion from nn.LayerNorm."
|
||||
|
||||
LazyInitContext.materialize(module)
|
||||
|
||||
|
@ -175,7 +171,8 @@ class LayerNorm(BaseLayerNorm):
|
|||
# aggregation of these gradients is necessary during backpropagation.
|
||||
# Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation.
|
||||
SeqParallelUtils.marked_as_sp_partial_derived_param(module.weight)
|
||||
SeqParallelUtils.marked_as_sp_partial_derived_param(module.bias)
|
||||
if module.bias is not None:
|
||||
SeqParallelUtils.marked_as_sp_partial_derived_param(module.bias)
|
||||
|
||||
return module
|
||||
|
||||
|
@ -188,31 +185,29 @@ class FusedLayerNorm(BaseLayerNorm):
|
|||
def __init__(self) -> None:
|
||||
raise NotImplementedError(
|
||||
"FusedLayerNorm is not implemented as a physical class. "
|
||||
"It is meant to be used only with the from_native_module interface convert a native pytorch layer norm module to FusedLayerNorm module provided by apex."
|
||||
"It is meant to be used only with the from_native_module interface convert a native LayerNorm module to FusedLayerNorm module provided by apex."
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def from_native_module(module: nn.LayerNorm, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module:
|
||||
r"""
|
||||
Convert a native pytorch layer norm module to FusedLayerNorm module provided by apex,
|
||||
Convert a native LayerNorm module to FusedLayerNorm module provided by apex,
|
||||
and optionally marking parameters for gradient aggregation.
|
||||
|
||||
Args:
|
||||
module (nn.LayerNorm): The native PyTorch LayerNorm module to be converted.
|
||||
module (nn.Module): The native LayerNorm module to be converted.
|
||||
sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism.
|
||||
|
||||
Returns:
|
||||
nn.Module: Union[FastLayerNorm, FusedLayerNorm].
|
||||
|
||||
Raises:
|
||||
AssertionError: If the provided module is not an instance of nn.LayerNorm.
|
||||
"""
|
||||
|
||||
LazyInitContext.materialize(module)
|
||||
# get the attributes of the module
|
||||
normalized_shape = module.normalized_shape
|
||||
eps = module.eps
|
||||
elementwise_affine = module.elementwise_affine
|
||||
normalized_shape = getattr(module, "normalized_shape", module.weight.shape[0])
|
||||
eps = module.variance_epsilon if hasattr(module, "variance_epsilon") else module.eps
|
||||
elementwise_affine = getattr(module, "elementwise_affine", True)
|
||||
dtype = module.weight.dtype
|
||||
device = module.weight.device
|
||||
|
||||
|
@ -230,116 +225,7 @@ class FusedLayerNorm(BaseLayerNorm):
|
|||
ApexFusedLayerNorm = FusedLayerNormWithHook
|
||||
except NameError:
|
||||
warnings.warn(
|
||||
"Please install Apex from source to use fused kernels, or set self.enable_fused_normalization = False. Using vanilla layernorm instead."
|
||||
)
|
||||
return module
|
||||
|
||||
layernorm = (
|
||||
ApexFusedLayerNorm(normalized_shape, eps=eps, elementwise_affine=elementwise_affine).to(dtype).to(device)
|
||||
)
|
||||
layernorm.weight = module.weight
|
||||
layernorm.bias = module.bias
|
||||
|
||||
if sp_partial_derived:
|
||||
# Since gradients are computed using only a subset of the data,
|
||||
# aggregation of these gradients is necessary during backpropagation.
|
||||
# Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation.
|
||||
SeqParallelUtils.marked_as_sp_partial_derived_param(layernorm.weight)
|
||||
SeqParallelUtils.marked_as_sp_partial_derived_param(layernorm.bias)
|
||||
|
||||
return layernorm
|
||||
|
||||
|
||||
class CohereLayerNorm(BaseLayerNorm):
|
||||
r"""
|
||||
This is a wrapper around the transformers.models.cohere.CohereLayerNorm. It is meant to be used only with the from_native_module interface.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
raise NotImplementedError(
|
||||
"CohereLayerNorm is not implemented as a physical class. "
|
||||
"It is meant to be used only with the from_native_module interface to convert a transformers.models.cohere.CohereLayerNorm module to colossalai layer norm module."
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def from_native_module(module: CohereLayerNorm, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module:
|
||||
r"""
|
||||
Convert a CohereLayerNorm module to colossalai layer norm module,
|
||||
and optionally marking parameters for gradient aggregation.
|
||||
|
||||
Args:
|
||||
module (transformers.models.cohere.CohereLayerNorm): The CohereLayerNorm module to be converted.
|
||||
sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism.
|
||||
|
||||
Returns:
|
||||
nn.Module: The LayerNorm module.
|
||||
|
||||
Raises:
|
||||
AssertionError: If the provided module is not an instance of CohereLayerNorm
|
||||
"""
|
||||
|
||||
LazyInitContext.materialize(module)
|
||||
|
||||
if sp_partial_derived:
|
||||
# Since gradients are computed using only a subset of the data,
|
||||
# aggregation of these gradients is necessary during backpropagation.
|
||||
# Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation.
|
||||
SeqParallelUtils.marked_as_sp_partial_derived_param(module.weight)
|
||||
|
||||
return module
|
||||
|
||||
|
||||
class FusedCohereLayerNorm(BaseLayerNorm):
|
||||
r"""
|
||||
This is a wrapper around the apex fused layernorm implementation. It is meant to be used only with the from_native_module interface.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
raise NotImplementedError(
|
||||
"FusedCohereLayerNorm is not implemented as a physical class. "
|
||||
"It is meant to be used only with the from_native_module interface convert a transformers.models.cohere.CohereLayerNorm module to FusedLayerNorm module provided by apex."
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def from_native_module(module: CohereLayerNorm, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module:
|
||||
r"""
|
||||
Convert a CohereLayerNorm module to FusedLayerNorm module provided by apex,
|
||||
and optionally marking parameters for gradient aggregation.
|
||||
|
||||
Args:
|
||||
module (transformers.models.cohere.CohereLayerNorm): The CohereLayerNorm module to be converted.
|
||||
sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism.
|
||||
|
||||
Returns:
|
||||
nn.Module: Union[FastLayerNorm, FusedLayerNorm].
|
||||
|
||||
Raises:
|
||||
AssertionError: If the provided module is not an instance of transformers.models.cohere.CohereLayerNorm.
|
||||
"""
|
||||
|
||||
LazyInitContext.materialize(module)
|
||||
# get the attributes of the module
|
||||
normalized_shape = module.weight.size(0)
|
||||
eps = module.variance_epsilon
|
||||
elementwise_affine = True
|
||||
dtype = module.weight.dtype
|
||||
device = module.weight.device
|
||||
|
||||
# pick the suitable layernorm implementation
|
||||
use_fast_ln = normalized_shape in FAST_LAYERNORM_SUPPORTED_SIZE
|
||||
|
||||
if use_fast_ln:
|
||||
if EnableFastLayerNorm:
|
||||
ApexFusedLayerNorm = FastLayerNormWithHook
|
||||
else:
|
||||
# fall back to the normal fused layernorm is not built
|
||||
ApexFusedLayerNorm = FusedLayerNormWithHook
|
||||
else:
|
||||
try:
|
||||
ApexFusedLayerNorm = FusedLayerNormWithHook
|
||||
except NameError:
|
||||
warnings.warn(
|
||||
"Please install Apex from source to use fused kernels, or set self.enable_fused_normalization = False. Using vanilla layernorm instead."
|
||||
"Please install Apex from source to use fused kernels, or set self.enable_fused_normalization = False. Using native layernorm instead."
|
||||
)
|
||||
return module
|
||||
|
||||
|
@ -347,6 +233,8 @@ class FusedCohereLayerNorm(BaseLayerNorm):
|
|||
ApexFusedLayerNorm(normalized_shape, eps=eps, elementwise_affine=elementwise_affine).to(dtype).to(device)
|
||||
)
|
||||
layernorm.weight = module.weight
|
||||
if module.bias is not None:
|
||||
layernorm.bias = module.bias
|
||||
|
||||
if sp_partial_derived:
|
||||
# Since gradients are computed using only a subset of the data,
|
||||
|
|
|
@ -7,8 +7,8 @@ from torch import Tensor
|
|||
from torch.nn import Module
|
||||
|
||||
from colossalai.shardformer.layer import (
|
||||
CohereLayerNorm,
|
||||
FusedCohereLayerNorm,
|
||||
FusedLayerNorm,
|
||||
LayerNorm,
|
||||
Linear1D_Col,
|
||||
Linear1D_Row,
|
||||
PaddingEmbedding,
|
||||
|
@ -64,9 +64,9 @@ class CommandPolicy(Policy):
|
|||
embedding_cls = PaddingEmbedding
|
||||
|
||||
if self.shard_config.enable_fused_normalization:
|
||||
norm_cls = FusedCohereLayerNorm
|
||||
norm_cls = FusedLayerNorm
|
||||
else:
|
||||
norm_cls = CohereLayerNorm
|
||||
norm_cls = LayerNorm
|
||||
|
||||
if self.pipeline_stage_manager is not None:
|
||||
self.shard_config.enable_sequence_parallelism = False
|
||||
|
|
Loading…
Reference in New Issue