Browse Source

[NFC] polish applications/Chat/coati/trainer/base.py code style (#4260)

pull/4338/head
shenggan 1 year ago committed by binmakeswell
parent
commit
798cb72907
  1. 53
      applications/Chat/coati/trainer/base.py

53
applications/Chat/coati/trainer/base.py

@ -25,12 +25,13 @@ class SLTrainer(ABC):
optim (Optimizer): the optimizer to use for training
"""
def __init__(self,
strategy: Strategy,
max_epochs: int,
model: nn.Module,
optimizer: Optimizer,
) -> None:
def __init__(
self,
strategy: Strategy,
max_epochs: int,
model: nn.Module,
optimizer: Optimizer,
) -> None:
super().__init__()
self.strategy = strategy
self.max_epochs = max_epochs
@ -50,10 +51,7 @@ class SLTrainer(ABC):
def fit(self, *args, **kwargs):
self._before_fit(*args, **kwargs)
for epoch in tqdm.trange(self.max_epochs,
desc="Epochs",
disable=not is_rank_0() or self.no_epoch_bar
):
for epoch in tqdm.trange(self.max_epochs, desc="Epochs", disable=not is_rank_0() or self.no_epoch_bar):
self._train(epoch)
self._eval(epoch)
@ -75,8 +73,7 @@ class OnPolicyTrainer(ABC):
buffer: NaiveReplayBuffer,
sample_buffer: bool,
dataloader_pin_memory: bool,
callbacks: List[Callback] = []
) -> None:
callbacks: List[Callback] = []) -> None:
super().__init__()
self.strategy = strategy
self.buffer = buffer
@ -138,7 +135,7 @@ class OnPolicyTrainer(ABC):
@abstractmethod
def _learn(self, update_step: int):
"""
Implement this method to learn from experience, either
Implement this method to learn from experience, either
sample from buffer or transform buffer into dataloader.
"""
raise NotImplementedError()
@ -154,13 +151,14 @@ class OnPolicyTrainer(ABC):
self._learn(update_step)
self._on_learn_epoch_end(update_step)
def fit(self,
prompt_dataloader: DataLoader,
pretrain_dataloader: DataLoader,
num_episodes: int,
num_collect_steps: int,
num_update_steps: int,
):
def fit(
self,
prompt_dataloader: DataLoader,
pretrain_dataloader: DataLoader,
num_episodes: int,
num_collect_steps: int,
num_update_steps: int,
):
"""
The main training loop of on-policy rl trainers.
@ -175,23 +173,16 @@ class OnPolicyTrainer(ABC):
self.pretrain_dataloader = CycledDataLoader(pretrain_dataloader)
with self._fit_ctx():
for episode in tqdm.trange(num_episodes,
desc="Episodes",
disable=not is_rank_0()):
for episode in tqdm.trange(num_episodes, desc="Episodes", disable=not is_rank_0()):
with self._episode_ctx(episode):
for collect_step in tqdm.trange(num_collect_steps,
desc="Collect steps",
disable=not is_rank_0()):
for collect_step in tqdm.trange(num_collect_steps, desc="Collect steps", disable=not is_rank_0()):
self._collect_phase(collect_step)
if not self.sample_buffer:
# HACK(cwher): according to the design of boost API, dataloader should also be boosted,
# but it is impractical to adapt this pattern in RL training. Thus, I left dataloader unboosted.
# I only call strategy.setup_dataloader() to setup dataloader.
self.dataloader = self.strategy.setup_dataloader(self.buffer,
self.dataloader_pin_memory)
for update_step in tqdm.trange(num_update_steps,
desc="Update steps",
disable=not is_rank_0()):
self.dataloader = self.strategy.setup_dataloader(self.buffer, self.dataloader_pin_memory)
for update_step in tqdm.trange(num_update_steps, desc="Update steps", disable=not is_rank_0()):
self._update_phase(update_step)
# NOTE: this is for on-policy algorithms
self.buffer.clear()

Loading…
Cancel
Save