mirror of https://github.com/hpcaitech/ColossalAI
[hotfix] fix param op hook (#1131)
* fix param op hook * update zero tp test * fix bugspull/1133/head
parent
a1a7899cae
commit
789cad301b
|
@ -11,17 +11,11 @@ def filter_args(func, *args):
|
|||
return [arg for arg in args if func(arg)]
|
||||
|
||||
|
||||
def unpack_args(*args):
|
||||
if len(args) == 1:
|
||||
return args[0]
|
||||
return args
|
||||
|
||||
|
||||
def replace_args(args, kwargs, new_args):
|
||||
args = new_args[:len(args)]
|
||||
for k, v in zip(kwargs.keys(), new_args[len(args):]):
|
||||
kwargs[k] = v
|
||||
return unpack_args(args), kwargs
|
||||
return tuple(args), kwargs
|
||||
|
||||
|
||||
class ColoParameter(ColoTensor, torch.nn.Parameter):
|
||||
|
|
|
@ -2,6 +2,7 @@ import torch
|
|||
from contextlib import contextmanager
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List, Tuple, Any
|
||||
from colossalai.tensor.colo_tensor import ColoTensor
|
||||
|
||||
|
||||
class ParamOpHook(ABC):
|
||||
|
@ -74,14 +75,18 @@ class ParamOpHookManager:
|
|||
hook.post_backward(params)
|
||||
|
||||
@staticmethod
|
||||
def pre_op(params: List[torch.Tensor], *args: Any) -> Any:
|
||||
def pre_op(params: List[torch.Tensor], *args: Any) -> list:
|
||||
ParamOpHookManager._trigger_pre_forward(params)
|
||||
return PreFwdPostBwd.apply(params, *args)
|
||||
args_info = _get_colo_tensors_info(*args)
|
||||
rets = PreFwdPostBwd.apply(params, *args)
|
||||
return _update_colo_tensors(args_info, *rets)
|
||||
|
||||
@staticmethod
|
||||
def post_op(params: List[torch.Tensor], args: Any) -> Any:
|
||||
def post_op(params: List[torch.Tensor], arg: Any) -> Any:
|
||||
ParamOpHookManager._trigger_post_forward(params)
|
||||
return PostFwdPreBwd.apply(params, args)
|
||||
arg_info = _get_colo_tensors_info(arg)
|
||||
ret = PostFwdPreBwd.apply(params, arg)
|
||||
return _unpack_args(_update_colo_tensors(arg_info, ret))
|
||||
|
||||
@staticmethod
|
||||
def has_hook() -> bool:
|
||||
|
@ -93,9 +98,7 @@ class PreFwdPostBwd(torch.autograd.Function):
|
|||
@staticmethod
|
||||
def forward(ctx, params, *args):
|
||||
ctx.params = params
|
||||
if len(args) == 1:
|
||||
return args[0]
|
||||
return args
|
||||
return _unpack_args(args)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, *grads):
|
||||
|
@ -114,3 +117,29 @@ class PostFwdPreBwd(torch.autograd.Function):
|
|||
def backward(ctx, *grads):
|
||||
ParamOpHookManager._trigger_pre_backward(ctx.params)
|
||||
return (None,) + grads
|
||||
|
||||
|
||||
def _unpack_args(args):
|
||||
if len(args) == 1:
|
||||
return args[0]
|
||||
return args
|
||||
|
||||
|
||||
def _get_colo_tensors_info(*args) -> list:
|
||||
info = []
|
||||
for arg in args:
|
||||
if isinstance(arg, ColoTensor):
|
||||
info.append((arg.__class__, arg.spec))
|
||||
else:
|
||||
info.append(None)
|
||||
return info
|
||||
|
||||
|
||||
def _update_colo_tensors(info, *args) -> list:
|
||||
ret = []
|
||||
for t_info, arg in zip(info, args):
|
||||
if t_info is not None:
|
||||
t_cls, spec = t_info
|
||||
arg = t_cls.from_torch_tensor(arg, spec=spec)
|
||||
ret.append(arg)
|
||||
return ret
|
||||
|
|
|
@ -10,7 +10,7 @@ from colossalai.utils.model.colo_init_context import ColoInitContext
|
|||
from colossalai.tensor import ChunkManager
|
||||
from colossalai.core import global_context as gpc
|
||||
from functools import partial
|
||||
from _utils import tensor_equal, set_seed
|
||||
from _utils import tensor_equal, set_seed, tensor_shard_equal
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from colossalai.nn.parallel import ColoDDPV2
|
||||
|
@ -19,19 +19,20 @@ from colossalai.zero import ZeroOptimizer
|
|||
from colossalai.testing import parameterize
|
||||
from colossalai.amp import convert_to_apex_amp
|
||||
from colossalai.gemini.gemini_mgr import GeminiManager
|
||||
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction, DistSpecManager, distspec
|
||||
|
||||
|
||||
def check_param_equal(model, torch_model):
|
||||
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
||||
if p.storage().size() > 0:
|
||||
assert p.dtype == torch.half
|
||||
assert tensor_equal(torch_p.to(dtype=p.dtype, device=p.device), p), f'{torch_p} vs {p}'
|
||||
assert tensor_shard_equal(torch_p.to(dtype=p.dtype, device=p.device), p), f'{torch_p} vs {p}'
|
||||
|
||||
|
||||
def check_grad_equal(model, torch_model):
|
||||
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
||||
if p.grad is not None:
|
||||
assert tensor_equal(torch_p.grad.to(dtype=p.grad.dtype, device=p.grad.device), p.grad)
|
||||
assert tensor_shard_equal(torch_p.grad.to(dtype=p.grad.dtype, device=p.grad.device), p.grad)
|
||||
|
||||
|
||||
def run_fwd_bwd(model, criterion, optimizer, input_ids, attn_mask):
|
||||
|
@ -43,10 +44,30 @@ def run_fwd_bwd(model, criterion, optimizer, input_ids, attn_mask):
|
|||
return logits
|
||||
|
||||
|
||||
def init_1d_row_spec(model):
|
||||
spec = TensorSpec(
|
||||
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
|
||||
ParallelAction(ComputePattern.TP1D))
|
||||
with DistSpecManager.no_grad():
|
||||
for n, p in model.named_parameters():
|
||||
if 'weight' in n and 'ln' not in n:
|
||||
p.set_spec(spec)
|
||||
|
||||
|
||||
def init_1d_col_spec(model):
|
||||
spec = TensorSpec(
|
||||
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
|
||||
ParallelAction(ComputePattern.TP1D))
|
||||
with DistSpecManager.no_grad():
|
||||
for n, p in model.named_parameters():
|
||||
if 'ln' not in n and ('weight' in n or 'bias' in n):
|
||||
p.set_spec(spec)
|
||||
|
||||
|
||||
@parameterize('use_chunk', [False, True])
|
||||
@parameterize('use_zero', [False, True])
|
||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
||||
def run_gpt(use_chunk, use_zero, placement_policy):
|
||||
def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None):
|
||||
set_seed(42)
|
||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
@ -58,6 +79,9 @@ def run_gpt(use_chunk, use_zero, placement_policy):
|
|||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||
torch_p.data.copy_(p)
|
||||
|
||||
if tp_init_spec_func:
|
||||
tp_init_spec_func(model)
|
||||
|
||||
chunk_size = ChunkManager.search_chunk_size(model, 8192, 8) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size,
|
||||
enable_distributed_storage=use_zero,
|
||||
|
@ -90,8 +114,15 @@ def run_gpt(use_chunk, use_zero, placement_policy):
|
|||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_gpt()
|
||||
config = {}
|
||||
if world_size == 4:
|
||||
config['parallel'] = {'tensor': {'mode': '1d', 'size': 2}}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
if world_size == 4:
|
||||
run_gpt(tp_init_spec_func=init_1d_col_spec)
|
||||
run_gpt(tp_init_spec_func=init_1d_row_spec)
|
||||
else:
|
||||
run_gpt()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
|
Loading…
Reference in New Issue