Browse Source

[autoparallel] update getitem handler (#2207)

pull/2209/head^2
YuliangLiu0306 2 years ago committed by GitHub
parent
commit
78509124d3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 3
      colossalai/auto_parallel/passes/runtime_preparation_pass.py
  2. 2
      colossalai/auto_parallel/tensor_shard/node_handler/binary_elementwise_handler.py
  3. 88
      colossalai/auto_parallel/tensor_shard/node_handler/strategy/getitem_generator.py
  4. 105
      tests/test_auto_parallel/test_tensor_shard/test_node_handler/test_getitem_handler.py

3
colossalai/auto_parallel/passes/runtime_preparation_pass.py

@ -223,7 +223,8 @@ def _size_value_converting(gm: torch.fx.GraphModule, device_mesh: DeviceMesh):
node.args = new_args
elif isinstance(getitem_index, (tuple, list)):
assert isinstance(getitem_index[0], slice)
if not isinstance(getitem_index[0], slice):
continue
new_slice_items = []
for slice_item in getitem_index:

2
colossalai/auto_parallel/tensor_shard/node_handler/binary_elementwise_handler.py

@ -16,7 +16,7 @@ __all__ = ['BinaryElementwiseHandler']
@operator_registry.register(BCAST_FUNC_OP)
class BinaryElementwiseHandler(MetaInfoNodeHandler):
class BinaryElementwiseHandler(NodeHandler):
"""
An BinaryBcastOpHandler is a node handler which deals with operations which have two
operands and broadcasting occurs such as torch.add.

88
colossalai/auto_parallel/tensor_shard/node_handler/strategy/getitem_generator.py

@ -7,7 +7,9 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
ShardingStrategy,
TrainCycleItem,
)
from colossalai.logging import get_dist_logger
from colossalai.tensor.shape_consistency import CollectiveCommPattern
from colossalai.tensor.sharding_spec import ShardingSpecException
from .strategy_generator import FollowingStrategyGenerator
@ -69,39 +71,61 @@ class TensorStrategyGenerator(GetItemStrategyGenerator):
def collate_strategies(self) -> List[ShardingStrategy]:
strategy_list = []
getitem_index = self.op_data['index'].data
for index, strategy in enumerate(self.predecessor_node.strategies_vector):
dim_partition_dict_mapping = {}
communication_action_mapping = {}
dim_partition_dict_for_input = strategy.output_sharding_specs[self.op_data["input"]].dim_partition_dict
dim_partition_dict_for_output = copy.deepcopy(dim_partition_dict_for_input)
gather_input = 0 in dim_partition_dict_for_input
if gather_input:
logical_process_axis = dim_partition_dict_for_output.pop(0)
shift_dim_partition_dict_for_output = {}
for dim, mesh_dim_list in dim_partition_dict_for_output.items():
shift_dim_partition_dict_for_output[dim - 1] = mesh_dim_list
dim_partition_dict_for_output = shift_dim_partition_dict_for_output
dim_partition_dict_mapping = {
"input": dim_partition_dict_for_input,
"output": dim_partition_dict_for_output,
}
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
if gather_input:
input_communication_action = self.get_communication_action(
sharding_spec_mapping["input"],
communication_pattern=CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
logical_process_axis=logical_process_axis,
comm_type=CommType.BEFORE,
arg_index=0)
communication_action_mapping["input"] = input_communication_action
name = f'{sharding_spec_mapping["output"].sharding_sequence} = {sharding_spec_mapping["input"].sharding_sequence}_{index}'
strategy = self.get_sharding_strategy(name=name,
sharding_spec_mapping=sharding_spec_mapping,
communication_action_mapping=communication_action_mapping)
try:
logger = get_dist_logger()
dim_partition_dict_mapping = {}
communication_action_mapping = {}
dim_partition_dict_for_input = copy.deepcopy(
strategy.output_sharding_specs[self.op_data["input"]].dim_partition_dict)
int_index = False
if isinstance(getitem_index, int):
int_index = True
getitem_dims = [
0,
]
shift_length = 1
elif isinstance(getitem_index, slice):
getitem_dims = [
0,
]
else:
getitem_dims = [i for i in range(len(getitem_index))]
if isinstance(getitem_index[0], int):
int_index = True
shift_length = len(getitem_index)
gather_dims = []
for dim in getitem_dims:
if dim in dim_partition_dict_for_input:
gather_dims.append(dim)
for dim in gather_dims:
dim_partition_dict_for_input.pop(dim)
dim_partition_dict_for_output = copy.deepcopy(dim_partition_dict_for_input)
if int_index:
shift_dim_partition_dict_for_output = {}
for dim, mesh_dim_list in dim_partition_dict_for_output.items():
shift_dim_partition_dict_for_output[dim - shift_length] = mesh_dim_list
dim_partition_dict_for_output = shift_dim_partition_dict_for_output
dim_partition_dict_mapping = {
"input": dim_partition_dict_for_input,
"output": dim_partition_dict_for_output,
}
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
name = f'{sharding_spec_mapping["output"].sharding_sequence} = {sharding_spec_mapping["input"].sharding_sequence}_{index}'
strategy = self.get_sharding_strategy(name=name,
sharding_spec_mapping=sharding_spec_mapping,
communication_action_mapping=communication_action_mapping)
except ShardingSpecException as e:
logger.debug(e)
continue
strategy_list.append(strategy)
for strategy in strategy_list:

105
tests/test_auto_parallel/test_tensor_shard/test_node_handler/test_getitem_handler.py

@ -1,59 +1,83 @@
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
from colossalai.auto_parallel.tensor_shard.node_handler.getitem_handler import GetItemHandler
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
from colossalai.auto_parallel.tensor_shard.node_handler.placeholder_handler import PlacehodlerHandler
from colossalai.auto_parallel.tensor_shard.node_handler.reshape_handler import ReshapeHandler
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer
from colossalai.fx.tracer.meta_patch.patched_module import linear
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use
from colossalai.testing.pytest_wrapper import run_on_environment_flag
from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
class GetItemFromTensorModel(nn.Module):
def __init__(self):
def __init__(self, getitem_index):
super().__init__()
self.getitem_index = getitem_index
def forward(self, input, other):
conv_node = nn.functional.conv2d(input, other)
x = conv_node[1]
linear_node = nn.functional.linear(input, other, bias=None)
x = linear_node[self.getitem_index]
return x
@run_on_environment_flag(name='AUTO_PARALLEL')
def test_getitem_from_tensor_handler():
model = GetItemFromTensorModel()
def check_getitem_from_tensor_handler(rank, getitem_index, world_size, port):
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
model = GetItemFromTensorModel(getitem_index=getitem_index)
input = torch.rand(8, 16, 64, 32).to('cuda')
other = torch.rand(64, 32).to('cuda')
# index of linear node in computation graph
node_index = 2
# total number of linear strategies
strategy_number = 23
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
numerical_test_for_node_strategy(model=model,
device_mesh=device_mesh,
node_index=node_index,
strategy_number=strategy_number,
input_args=[input, other],
meta_arg_names=['input', 'other'],
node_type='following')
tracer = ColoTracer()
# graph():
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
# %other : torch.Tensor [#users=1] = placeholder[target=other]
# %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%input_1, %other), kwargs = {})
# %getitem : [#users=1] = call_function[target=operator.getitem](args = (%conv2d, 1), kwargs = {})
# return getitem
graph = tracer.trace(model,
meta_args={
"input": torch.rand(4, 4, 64, 64).to('meta'),
"other": torch.rand(4, 16, 3, 3).to('meta'),
"input": torch.rand(8, 16, 64, 32).to('meta'),
"other": torch.rand(64, 32).to('meta'),
})
gm = ColoGraphModule(model, graph)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
conv_mod_node = list(graph.nodes)[2]
gm = ColoGraphModule(model, graph)
linear_mod_node = list(graph.nodes)[2]
getitem_mod_node = list(graph.nodes)[3]
getitem_strategies_vector = StrategiesVector(getitem_mod_node)
conv_strategies_vector = StrategiesVector(conv_mod_node)
linear_strategies_vector = StrategiesVector(linear_mod_node)
# build handler
conv_handler = ConvFunctionHandler(node=conv_mod_node,
device_mesh=device_mesh,
strategies_vector=conv_strategies_vector)
conv_handler.register_strategy(compute_resharding_cost=False)
setattr(conv_mod_node, 'strategies_vector', conv_strategies_vector)
linear_handler = LinearFunctionHandler(node=linear_mod_node,
device_mesh=device_mesh,
strategies_vector=linear_strategies_vector)
linear_handler.register_strategy(compute_resharding_cost=False)
setattr(linear_mod_node, 'strategies_vector', linear_strategies_vector)
getitem_handler = GetItemHandler(node=getitem_mod_node,
device_mesh=device_mesh,
strategies_vector=getitem_strategies_vector)
@ -67,23 +91,22 @@ def test_getitem_from_tensor_handler():
# make sure they have valid values
assert op_data.data is not None
assert mapping['input'].name == "conv2d"
assert mapping['input'].data.is_meta
assert mapping['input'].data.shape == torch.Size([4, 4, 62, 62])
assert mapping['input'].type == OperationDataType.ARG
assert mapping['input'].logical_shape == torch.Size([4, 4, 62, 62])
assert mapping['index'].name == "index"
assert isinstance(mapping['index'].data, int)
assert mapping['index'].type == OperationDataType.ARG
# getitem is a following strategy handler, so the number of strategies is equal to the predecessor node.
assert len(getitem_strategies_vector) == len(linear_strategies_vector)
assert mapping['output'].name == "getitem"
assert mapping['output'].data.is_meta
assert mapping['output'].data.shape == torch.Size([4, 62, 62])
assert mapping['output'].type == OperationDataType.OUTPUT
# getitem is a following strategy handler, so the number of strategies is equal to the predecessor node.
assert len(getitem_strategies_vector) == len(conv_strategies_vector)
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.dist
@rerun_if_address_is_in_use()
# @parameterize('getitem_index', [slice(0, 2), (slice(None), slice(None))])
@parameterize('getitem_index', [1, (1, 4), slice(0, 2), (slice(None), slice(None))])
def test_getitem_from_tensor_handler(getitem_index):
world_size = 4
run_func = partial(check_getitem_from_tensor_handler,
getitem_index=getitem_index,
world_size=world_size,
port=free_port())
mp.spawn(run_func, nprocs=world_size)
class GetItemFromTupleModel(nn.Module):

Loading…
Cancel
Save