diff --git a/docs/source/en/advanced_tutorials/meet_gemini.md b/docs/source/en/advanced_tutorials/meet_gemini.md index c1c23a355..e94e3fea3 100644 --- a/docs/source/en/advanced_tutorials/meet_gemini.md +++ b/docs/source/en/advanced_tutorials/meet_gemini.md @@ -9,7 +9,7 @@ When you only have a few GPUs for large model training tasks, **heterogeneous tr ## Usage -At present, Gemini supports compatibility with ZeRO parallel mode, and it is really simple to use Gemini: Inject the feathures of `GeminiPlugin` into training components with `booster`. More instructions of `booster` please refer to [**usage of booster**](../basics/booster_api.md). +At present, Gemini supports compatibility with ZeRO parallel mode, and it is really simple to use Gemini: Inject the features of `GeminiPlugin` into training components with `booster`. More instructions of `booster` please refer to [**usage of booster**](../basics/booster_api.md). ```python from torchvision.models import resnet18 diff --git a/docs/source/zh-Hans/advanced_tutorials/train_vit_with_hybrid_parallelism.md b/docs/source/zh-Hans/advanced_tutorials/train_vit_with_hybrid_parallelism.md index e2f2c90a3..5ad083920 100644 --- a/docs/source/zh-Hans/advanced_tutorials/train_vit_with_hybrid_parallelism.md +++ b/docs/source/zh-Hans/advanced_tutorials/train_vit_with_hybrid_parallelism.md @@ -150,7 +150,7 @@ Colossal-AI 提供了自己的优化器、损失函数和学习率调度器。Py optimizer = colossalai.nn.Lamb(model.parameters(), lr=1.8e-2, weight_decay=0.1) # build loss criterion = torch.nn.CrossEntropyLoss() -# lr_scheduelr +# lr_scheduler lr_scheduler = LinearWarmupLR(optimizer, warmup_steps=50, total_steps=gpc.config.NUM_EPOCHS) ``` diff --git a/docs/source/zh-Hans/features/mixed_precision_training.md b/docs/source/zh-Hans/features/mixed_precision_training.md index 4628b09cd..a92e7e093 100644 --- a/docs/source/zh-Hans/features/mixed_precision_training.md +++ b/docs/source/zh-Hans/features/mixed_precision_training.md @@ -303,7 +303,7 @@ colossalai.launch_from_torch(config=args.config) # build loss criterion = torch.nn.CrossEntropyLoss() - # lr_scheduelr + # lr_scheduler lr_scheduler = LinearWarmupLR(optimizer, warmup_steps=50, total_steps=gpc.config.NUM_EPOCHS) ``` diff --git a/docs/source/zh-Hans/features/mixed_precision_training_with_booster.md b/docs/source/zh-Hans/features/mixed_precision_training_with_booster.md index 187aef1a6..ba9451341 100644 --- a/docs/source/zh-Hans/features/mixed_precision_training_with_booster.md +++ b/docs/source/zh-Hans/features/mixed_precision_training_with_booster.md @@ -181,7 +181,7 @@ optimizer = torch.optim.SGD(model.parameters(), lr=1e-2, weight_decay=0.1) # build loss criterion = torch.nn.CrossEntropyLoss() -# lr_scheduelr +# lr_scheduler lr_scheduler = LinearWarmupLR(optimizer, warmup_steps=50, total_steps=NUM_EPOCHS) ```