mirror of https://github.com/hpcaitech/ColossalAI
[llama] update training script (#5360)
* [llama] update training script * [doc] polish docstrpull/5364/head
parent
6c0fa7b9a8
commit
73f9f23fc6
|
@ -58,6 +58,7 @@ class DataCollatorForSupervisedDataset(object):
|
|||
tokenizer: PreTrainedTokenizer
|
||||
max_length: int = 4096
|
||||
ignore_index: int = -100
|
||||
padding: str = "max_length"
|
||||
|
||||
def __call__(self, instances: Sequence[Dict[str, List[int]]]) -> Dict[str, torch.Tensor]:
|
||||
"""
|
||||
|
@ -102,10 +103,11 @@ class DataCollatorForSupervisedDataset(object):
|
|||
batch_first=True,
|
||||
padding_value=self.ignore_index,
|
||||
) # (bsz, max_len)
|
||||
# pad to max
|
||||
to_pad = self.max_length - input_ids.size(1)
|
||||
input_ids = F.pad(input_ids, (0, to_pad), value=self.tokenizer.pad_token_id)
|
||||
labels = F.pad(labels, (0, to_pad), value=self.ignore_index)
|
||||
if self.padding == "max_length":
|
||||
# pad to max
|
||||
to_pad = self.max_length - input_ids.size(1)
|
||||
input_ids = F.pad(input_ids, (0, to_pad), value=self.tokenizer.pad_token_id)
|
||||
labels = F.pad(labels, (0, to_pad), value=self.ignore_index)
|
||||
elif self.tokenizer.padding_side == "left":
|
||||
reversed_input_ids = [seq.flip(dims=(0,)) for seq in batch_input_ids]
|
||||
reversed_input_ids = torch.nn.utils.rnn.pad_sequence(
|
||||
|
|
|
@ -42,3 +42,4 @@ colossalai run --nproc_per_node 8 --hostfile hostfile --master_port 30013 train.
|
|||
--warmup_steps 100 \
|
||||
--use_grad_checkpoint \
|
||||
--use_flash_attn \
|
||||
--pad_token "unk"
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Continual Pre-training of LLaMA-2 developed by Colossal-AI Team
|
||||
Continual Pre-training/Supervised fine-tuning of Colossal-LLaMA-2 developed by Colossal-AI Team
|
||||
"""
|
||||
|
||||
import argparse
|
||||
|
@ -20,17 +20,20 @@ from colossal_llama2.dataset.loader import (
|
|||
from colossal_llama2.utils.ckpt_io import load_checkpoint, save_checkpoint
|
||||
from colossal_llama2.utils.flash_attention_patch import replace_with_flash_attention
|
||||
from colossal_llama2.utils.froze import freeze_non_embeds_parameters
|
||||
from colossal_llama2.utils.neftune_patch import activate_neftune, deactivate_neftune
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
|
||||
from transformers import LlamaForCausalLM, LlamaTokenizer
|
||||
|
||||
import colossalai
|
||||
from colossalai.accelerator import get_accelerator
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin
|
||||
from colossalai.cluster import DistCoordinator
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
|
||||
def get_model_numel(model: torch.nn.Module) -> int:
|
||||
|
@ -82,6 +85,7 @@ def main() -> None:
|
|||
parser.add_argument("--tensorboard_dir", type=str, default="logs_dir", help="Tensorboard directory")
|
||||
parser.add_argument("--config_file", type=str, default="config_file", help="Config file")
|
||||
parser.add_argument("--num_epochs", type=int, default=1, help="Number of training epochs")
|
||||
parser.add_argument("--accumulation_steps", type=int, default=1, help="Number of accumulation steps")
|
||||
parser.add_argument("--micro_batch_size", type=int, default=2, help="Batch size of each process")
|
||||
parser.add_argument("--lr", type=float, default=3e-4, help="Learning rate")
|
||||
parser.add_argument("--max_length", type=int, default=4096, help="Model max length")
|
||||
|
@ -107,6 +111,12 @@ def main() -> None:
|
|||
default=False,
|
||||
help="Use flash-attention",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_neft",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Use NEFTune",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--freeze_non_embeds_params",
|
||||
action="store_true",
|
||||
|
@ -115,6 +125,8 @@ def main() -> None:
|
|||
)
|
||||
parser.add_argument("--tp", type=int, default=1)
|
||||
parser.add_argument("--zero", type=int, default=1)
|
||||
parser.add_argument("--pad_token", choices=["eos", "unk"], default="eos")
|
||||
parser.add_argument("--padding_mode", choices=["max_length", "longest"], default="max_length")
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(args.config_file, "w") as f:
|
||||
|
@ -124,6 +136,7 @@ def main() -> None:
|
|||
# Initialize Distributed Training
|
||||
# ==============================
|
||||
colossalai.launch_from_torch({})
|
||||
accelerator = get_accelerator()
|
||||
coordinator = DistCoordinator()
|
||||
|
||||
# ==============================
|
||||
|
@ -181,7 +194,10 @@ def main() -> None:
|
|||
# Initialize Tokenizer, Dataset, Collator and Dataloader
|
||||
# ======================================================
|
||||
tokenizer = LlamaTokenizer.from_pretrained(args.pretrained)
|
||||
tokenizer.pad_token = tokenizer.unk_token
|
||||
if args.pad_token == "eos":
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
elif args.pad_token == "unk":
|
||||
tokenizer.pad_token = tokenizer.unk_token
|
||||
tokenizer.add_bos_token = False
|
||||
tokenizer.add_eos_token = False
|
||||
|
||||
|
@ -192,7 +208,9 @@ def main() -> None:
|
|||
coordinator.print_on_master(f"Load dataset: {args.dataset}")
|
||||
|
||||
dataset = load_tokenized_dataset(dataset_paths=args.dataset, mode="train")
|
||||
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer, max_length=args.max_length)
|
||||
data_collator = DataCollatorForSupervisedDataset(
|
||||
tokenizer=tokenizer, max_length=args.max_length, padding=args.padding_mode
|
||||
)
|
||||
dataloader = plugin.prepare_dataloader(
|
||||
dataset=dataset,
|
||||
batch_size=args.micro_batch_size,
|
||||
|
@ -202,26 +220,19 @@ def main() -> None:
|
|||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
coordinator.print_on_master(
|
||||
f"Max CUDA memory after data loader: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB"
|
||||
f"Max device memory after data loader: {accelerator.max_memory_allocated() / 1024 ** 2:.2f} MB"
|
||||
)
|
||||
|
||||
# ======================================================
|
||||
# Initialize Model, Objective, Optimizer and LR Scheduler
|
||||
# ======================================================
|
||||
|
||||
# colossalai has changed api for get_current_device in 0.3.4 version or newer
|
||||
try:
|
||||
from colossalai.accelerator import get_accelerator
|
||||
|
||||
current_device = get_accelerator().get_current_device()
|
||||
except:
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
current_device = get_current_device()
|
||||
|
||||
init_ctx = LazyInitContext(default_device=current_device) if isinstance(plugin, (GeminiPlugin,)) else nullcontext()
|
||||
init_ctx = (
|
||||
LazyInitContext(default_device=get_current_device())
|
||||
if isinstance(plugin, (GeminiPlugin, HybridParallelPlugin))
|
||||
else nullcontext()
|
||||
)
|
||||
with init_ctx:
|
||||
model = LlamaForCausalLM(LlamaConfig.from_pretrained(args.pretrained))
|
||||
model = LlamaForCausalLM.from_pretrained(args.pretrained)
|
||||
# Freeze part of parameters.
|
||||
if args.freeze_non_embeds_params:
|
||||
freeze_non_embeds_parameters(model=model)
|
||||
|
@ -246,12 +257,14 @@ def main() -> None:
|
|||
adamw_mode=True,
|
||||
)
|
||||
|
||||
if args.warmup_steps is None:
|
||||
args.warmup_steps = int(args.num_epochs * 0.025 * (len(dataloader) // args.accumulation_steps))
|
||||
coordinator.print_on_master(f"Warmup steps is set to {args.warmup_steps}")
|
||||
|
||||
lr_scheduler = CosineAnnealingWarmupLR(
|
||||
optimizer=optimizer,
|
||||
total_steps=args.num_epochs * len(dataloader),
|
||||
warmup_steps=args.warmup_steps
|
||||
if args.warmup_steps is not None
|
||||
else int(args.num_epochs * len(dataloader) * 0.025),
|
||||
total_steps=args.num_epochs * (len(dataloader) // args.accumulation_steps),
|
||||
warmup_steps=args.warmup_steps,
|
||||
eta_min=0.1 * args.lr,
|
||||
)
|
||||
|
||||
|
@ -267,11 +280,9 @@ def main() -> None:
|
|||
|
||||
torch.set_default_dtype(torch.float)
|
||||
|
||||
if args.load_checkpoint is None:
|
||||
coordinator.print_on_master(f"Load pretrained model checkpoint from {args.pretrained}")
|
||||
booster.load_model(model, args.pretrained, strict=False)
|
||||
|
||||
coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB")
|
||||
coordinator.print_on_master(
|
||||
f"Booster init max device memory: {accelerator.max_memory_allocated() / 1024 ** 2:.2f} MB"
|
||||
)
|
||||
coordinator.print_on_master(
|
||||
f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB"
|
||||
)
|
||||
|
@ -298,85 +309,103 @@ def main() -> None:
|
|||
coordinator.print_on_master(f"Loaded sample at index {sampler_start_idx}")
|
||||
|
||||
coordinator.print_on_master(
|
||||
f"Checkpoint loaded max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB"
|
||||
f"Checkpoint loaded max device memory: {accelerator.max_memory_allocated() / 1024 ** 2:.2f} MB"
|
||||
)
|
||||
coordinator.print_on_master(
|
||||
f"Checkpoint loaded CUDA memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB"
|
||||
f"Checkpoint loaded device memory: {accelerator.memory_allocated() / 1024 ** 2:.2f} MB"
|
||||
)
|
||||
coordinator.print_on_master(
|
||||
f"Checkpoint loaded max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB"
|
||||
)
|
||||
|
||||
num_steps_per_epoch = len(dataloader)
|
||||
if args.use_neft:
|
||||
coordinator.print_on_master("Activate NEFTune.")
|
||||
model, handle = activate_neftune(model)
|
||||
|
||||
num_steps_per_epoch = len(dataloader) // args.accumulation_steps
|
||||
# If resume training, set the sampler start index to the correct value
|
||||
assert isinstance(dataloader.sampler, StatefulDistributedSampler)
|
||||
dataloader.sampler.set_start_index(start_index=sampler_start_idx)
|
||||
|
||||
for epoch in range(start_epoch, args.num_epochs):
|
||||
dataloader.sampler.set_epoch(epoch=epoch)
|
||||
with tqdm(
|
||||
iterable=enumerate(dataloader, start=start_step),
|
||||
desc=f"Epoch {epoch}",
|
||||
disable=not coordinator.is_master(),
|
||||
total=num_steps_per_epoch,
|
||||
initial=start_step,
|
||||
) as pbar:
|
||||
for step, batch in pbar:
|
||||
batch = {k: v.to(current_device) for k, v in batch.items() if isinstance(v, torch.Tensor)}
|
||||
pbar = tqdm(desc=f"Epoch {epoch}", disable=not coordinator.is_master(), total=num_steps_per_epoch)
|
||||
total_loss = torch.tensor(0.0, device=get_current_device())
|
||||
for step, batch in enumerate(dataloader):
|
||||
batch = {k: v.to(get_current_device()) for k, v in batch.items() if isinstance(v, torch.Tensor)}
|
||||
|
||||
batch_output = model(**batch)
|
||||
batch_output = model(**batch)
|
||||
|
||||
loss = batch_output.loss
|
||||
loss = batch_output.loss / args.accumulation_steps
|
||||
total_loss.add_(loss.data)
|
||||
|
||||
booster.backward(loss=loss, optimizer=optimizer)
|
||||
booster.backward(loss=loss, optimizer=optimizer)
|
||||
|
||||
if (step + 1) % args.accumulation_steps == 0:
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
all_reduce_mean(tensor=loss)
|
||||
pbar.set_postfix({"Loss": f"{loss.item():.4f}"})
|
||||
all_reduce_mean(tensor=total_loss)
|
||||
pbar.set_postfix({"Loss": f"{total_loss.item():.4f}"})
|
||||
if coordinator.is_master():
|
||||
global_step = epoch * num_steps_per_epoch + step
|
||||
writer.add_scalar(tag="Loss", scalar_value=loss.item(), global_step=global_step)
|
||||
global_step = (epoch * num_steps_per_epoch) + (step + 1) // args.accumulation_steps
|
||||
writer.add_scalar(tag="Loss", scalar_value=total_loss.item(), global_step=global_step)
|
||||
writer.add_scalar(
|
||||
tag="Learning Rate",
|
||||
scalar_value=lr_scheduler.get_last_lr()[0],
|
||||
global_step=global_step,
|
||||
)
|
||||
# Save modeling.
|
||||
total_loss.fill_(0.0)
|
||||
pbar.update()
|
||||
# Save modeling.
|
||||
|
||||
if (args.save_interval > 0 and (step + 1) % args.save_interval == 0) or (step + 1) == len(dataloader):
|
||||
coordinator.print_on_master("\nStart saving model checkpoint with running states")
|
||||
save_checkpoint(
|
||||
save_dir=args.save_dir,
|
||||
booster=booster,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
lr_scheduler=lr_scheduler,
|
||||
epoch=epoch,
|
||||
step=step + 1,
|
||||
batch_size=args.micro_batch_size,
|
||||
coordinator=coordinator,
|
||||
)
|
||||
coordinator.print_on_master(
|
||||
f"Saved checkpoint at epoch {epoch} step {step + 1} at folder {args.save_dir}"
|
||||
)
|
||||
if (args.save_interval > 0 and (step + 1) % (args.save_interval * args.accumulation_steps) == 0) or (
|
||||
step + 1
|
||||
) == len(dataloader):
|
||||
coordinator.print_on_master("\nStart saving model checkpoint with running states")
|
||||
|
||||
# Delete CUDA cache.
|
||||
# del batch, batch_labels, batch_output, loss
|
||||
torch.cuda.empty_cache()
|
||||
if args.use_neft:
|
||||
coordinator.print_on_master("Deactivate NEFTune before saving model.")
|
||||
deactivate_neftune(model, handle)
|
||||
|
||||
save_checkpoint(
|
||||
save_dir=args.save_dir,
|
||||
booster=booster,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
lr_scheduler=lr_scheduler,
|
||||
epoch=epoch,
|
||||
step=step + 1,
|
||||
batch_size=args.micro_batch_size,
|
||||
coordinator=coordinator,
|
||||
)
|
||||
coordinator.print_on_master(
|
||||
f"Saved checkpoint at epoch {epoch} step {step + 1} at folder {args.save_dir}"
|
||||
)
|
||||
|
||||
if args.use_neft:
|
||||
coordinator.print_on_master("Activate NEFTune.")
|
||||
model, handle = activate_neftune(model)
|
||||
|
||||
# Delete cache.
|
||||
# del batch, batch_labels, batch_output, loss
|
||||
accelerator.empty_cache()
|
||||
|
||||
# the continue epochs are not resumed, so we need to reset the sampler start index and start step
|
||||
dataloader.sampler.set_start_index(start_index=0)
|
||||
start_step = 0
|
||||
|
||||
if args.use_neft:
|
||||
coordinator.print_on_master("Deactivate NEFTune.")
|
||||
deactivate_neftune(model, handle)
|
||||
|
||||
# Final save.
|
||||
coordinator.print_on_master("Start saving final model checkpoint")
|
||||
booster.save_model(model, os.path.join(args.save_dir, "modeling"), shard=True)
|
||||
coordinator.print_on_master(f"Saved final model checkpoint at epoch {epoch} at folder {args.save_dir}")
|
||||
|
||||
coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
|
||||
coordinator.print_on_master(f"Max device memory usage: {accelerator.max_memory_allocated()/1024**2:.2f} MB")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -25,7 +25,7 @@ SAVE_DIR="${PARENT_SAVE_DIR}${FULL_PROJECT_NAME}"
|
|||
TENSORBOARD_DIR="${PARENT_TENSORBOARD_DIR}${FULL_PROJECT_NAME}"
|
||||
CONFIG_FILE="${PARENT_CONFIG_FILE}${FULL_PROJECT_NAME}.json"
|
||||
|
||||
colossalai run --nproc_per_node 8 --hostfile hostfile --master_port 30013 train_sft.py \
|
||||
colossalai run --nproc_per_node 8 --hostfile hostfile --master_port 30013 train.py \
|
||||
--pretrained $PRETRAINED_MODEL_PATH \
|
||||
--dataset ${dataset[@]} \
|
||||
--plugin "zero2" \
|
||||
|
@ -44,3 +44,4 @@ colossalai run --nproc_per_node 8 --hostfile hostfile --master_port 30013 train_
|
|||
--use_grad_checkpoint \
|
||||
--use_flash_attn \
|
||||
--use_neft \
|
||||
--pad_token "eos"
|
||||
|
|
|
@ -1,403 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Supervised fine-tuning of Colossal-LLaMA-2-base developed by Colossal-AI Team
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import resource
|
||||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from colossal_llama2.dataset.loader import (
|
||||
DataCollatorForSupervisedDataset,
|
||||
StatefulDistributedSampler,
|
||||
load_tokenized_dataset,
|
||||
)
|
||||
from colossal_llama2.utils.ckpt_io import load_checkpoint, save_checkpoint
|
||||
from colossal_llama2.utils.flash_attention_patch import replace_with_flash_attention
|
||||
from colossal_llama2.utils.froze import freeze_non_embeds_parameters
|
||||
from colossal_llama2.utils.neftune_patch import activate_neftune, deactivate_neftune
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin
|
||||
from colossalai.cluster import DistCoordinator
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
|
||||
def get_model_numel(model: torch.nn.Module) -> int:
|
||||
return sum(p.numel() for p in model.parameters())
|
||||
|
||||
|
||||
def format_numel_str(numel: int) -> str:
|
||||
B = 1024**3
|
||||
M = 1024**2
|
||||
K = 1024
|
||||
if numel >= B:
|
||||
return f"{numel / B:.2f} B"
|
||||
elif numel >= M:
|
||||
return f"{numel / M:.2f} M"
|
||||
elif numel >= K:
|
||||
return f"{numel / K:.2f} K"
|
||||
else:
|
||||
return f"{numel}"
|
||||
|
||||
|
||||
def all_reduce_mean(tensor: torch.Tensor) -> torch.Tensor:
|
||||
dist.all_reduce(tensor=tensor, op=dist.ReduceOp.SUM)
|
||||
tensor.div_(dist.get_world_size())
|
||||
return tensor
|
||||
|
||||
|
||||
def main() -> None:
|
||||
# ==============================
|
||||
# Parse Arguments
|
||||
# ==============================
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--pretrained",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Address of the pre-trained modeling",
|
||||
)
|
||||
parser.add_argument("--dataset", nargs="+", default=[])
|
||||
parser.add_argument(
|
||||
"--plugin",
|
||||
type=str,
|
||||
default="gemini",
|
||||
choices=["gemini", "gemini_auto", "zero2", "zero2_cpu", "3d"],
|
||||
help="Choose which plugin to use",
|
||||
)
|
||||
parser.add_argument("--load_checkpoint", type=str, default=None, help="Load checkpoint")
|
||||
parser.add_argument("--save_interval", type=int, default=1000, help="Save interval")
|
||||
parser.add_argument("--save_dir", type=str, default="checkpoint_dir", help="Checkpoint directory")
|
||||
parser.add_argument("--tensorboard_dir", type=str, default="logs_dir", help="Tensorboard directory")
|
||||
parser.add_argument("--config_file", type=str, default="config_file", help="Config file")
|
||||
parser.add_argument("--num_epochs", type=int, default=1, help="Number of training epochs")
|
||||
parser.add_argument("--accumulation_steps", type=int, default=8, help="Number of accumulation steps")
|
||||
parser.add_argument("--micro_batch_size", type=int, default=2, help="Batch size of each process")
|
||||
parser.add_argument("--lr", type=float, default=3e-4, help="Learning rate")
|
||||
parser.add_argument("--max_length", type=int, default=4096, help="Model max length")
|
||||
parser.add_argument(
|
||||
"--mixed_precision",
|
||||
type=str,
|
||||
default="fp16",
|
||||
choices=["fp16", "bf16"],
|
||||
help="Mixed precision",
|
||||
)
|
||||
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping value")
|
||||
parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay")
|
||||
parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps")
|
||||
parser.add_argument(
|
||||
"--use_grad_checkpoint",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Use gradient checkpointing",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_flash_attn",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Use flash-attention",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_neft",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Use NEFTune",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--freeze_non_embeds_params",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Freeze non embeddings parameters",
|
||||
)
|
||||
parser.add_argument("--tp", type=int, default=1)
|
||||
parser.add_argument("--zero", type=int, default=1)
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(args.config_file, "w") as f:
|
||||
json.dump(args.__dict__, f, indent=4)
|
||||
|
||||
# ==============================
|
||||
# Initialize Distributed Training
|
||||
# ==============================
|
||||
colossalai.launch_from_torch({})
|
||||
coordinator = DistCoordinator()
|
||||
|
||||
# ==============================
|
||||
# Initialize Tensorboard
|
||||
# ==============================
|
||||
if coordinator.is_master():
|
||||
os.makedirs(args.tensorboard_dir, exist_ok=True)
|
||||
writer = SummaryWriter(args.tensorboard_dir)
|
||||
|
||||
# ==============================
|
||||
# Initialize Booster
|
||||
# ==============================
|
||||
if args.plugin == "gemini":
|
||||
plugin = GeminiPlugin(
|
||||
precision=args.mixed_precision,
|
||||
initial_scale=2**16,
|
||||
max_norm=args.grad_clip,
|
||||
)
|
||||
elif args.plugin == "gemini_auto":
|
||||
plugin = GeminiPlugin(
|
||||
precision=args.mixed_precision,
|
||||
placement_policy="auto",
|
||||
initial_scale=2**16,
|
||||
max_norm=args.grad_clip,
|
||||
)
|
||||
elif args.plugin == "zero2":
|
||||
plugin = LowLevelZeroPlugin(
|
||||
stage=2,
|
||||
precision=args.mixed_precision,
|
||||
initial_scale=2**16,
|
||||
max_norm=args.grad_clip,
|
||||
)
|
||||
elif args.plugin == "zero2_cpu":
|
||||
plugin = LowLevelZeroPlugin(
|
||||
stage=2,
|
||||
precision=args.mixed_precision,
|
||||
initial_scale=2**16,
|
||||
cpu_offload=True,
|
||||
max_norm=args.grad_clip,
|
||||
)
|
||||
elif args.plugin == "3d":
|
||||
plugin = HybridParallelPlugin(
|
||||
tp_size=args.tp,
|
||||
pp_size=1,
|
||||
zero_stage=args.zero,
|
||||
max_norm=args.grad_clip,
|
||||
precision=args.mixed_precision,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown plugin {args.plugin}")
|
||||
|
||||
booster = Booster(plugin=plugin)
|
||||
|
||||
# ======================================================
|
||||
# Initialize Tokenizer, Dataset, Collator and Dataloader
|
||||
# ======================================================
|
||||
tokenizer = LlamaTokenizer.from_pretrained(args.pretrained)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
tokenizer.add_bos_token = False
|
||||
tokenizer.add_eos_token = False
|
||||
|
||||
coordinator.print_on_master(f"Configuration file will be saved at: {args.config_file}")
|
||||
coordinator.print_on_master(f"Tensorboard logs will be saved at: {args.tensorboard_dir}")
|
||||
coordinator.print_on_master(f"Model checkpoint will be saved at: {args.save_dir}")
|
||||
|
||||
coordinator.print_on_master(f"Load dataset: {args.dataset}")
|
||||
|
||||
dataset = load_tokenized_dataset(dataset_paths=args.dataset, mode="train")
|
||||
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer, max_length=args.max_length)
|
||||
dataloader = plugin.prepare_dataloader(
|
||||
dataset=dataset,
|
||||
batch_size=args.micro_batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
collate_fn=data_collator,
|
||||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
coordinator.print_on_master(
|
||||
f"Max CUDA memory after data loader: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB"
|
||||
)
|
||||
|
||||
# ======================================================
|
||||
# Initialize Model, Objective, Optimizer and LR Scheduler
|
||||
# ======================================================
|
||||
init_ctx = (
|
||||
LazyInitContext(default_device=get_current_device()) if isinstance(plugin, (GeminiPlugin,)) else nullcontext()
|
||||
)
|
||||
with init_ctx:
|
||||
model = LlamaForCausalLM(LlamaConfig.from_pretrained(args.pretrained))
|
||||
# Freeze part of parameters.
|
||||
if args.freeze_non_embeds_params:
|
||||
freeze_non_embeds_parameters(model=model)
|
||||
|
||||
if args.use_grad_checkpoint:
|
||||
model.gradient_checkpointing_enable()
|
||||
coordinator.print_on_master(msg="Gradient checkpointing enabled successfully")
|
||||
if args.use_flash_attn:
|
||||
replace_with_flash_attention(model=model)
|
||||
coordinator.print_on_master(msg="Flash-attention enabled successfully")
|
||||
|
||||
model_numel = get_model_numel(model)
|
||||
coordinator.print_on_master(f"Model params: {format_numel_str(model_numel)}")
|
||||
|
||||
optimizer = HybridAdam(
|
||||
model_params=filter(lambda p: p.requires_grad, model.parameters())
|
||||
if args.freeze_non_embeds_params
|
||||
else model.parameters(),
|
||||
lr=args.lr,
|
||||
betas=(0.9, 0.95),
|
||||
weight_decay=args.weight_decay,
|
||||
adamw_mode=True,
|
||||
)
|
||||
|
||||
if args.warmup_steps is None:
|
||||
args.warmup_steps = int(args.num_epochs * 0.025 * (len(dataloader) // args.accumulation_steps))
|
||||
coordinator.print_on_master(f"Warmup steps is set to {args.warmup_steps}")
|
||||
|
||||
lr_scheduler = CosineAnnealingWarmupLR(
|
||||
optimizer=optimizer,
|
||||
total_steps=args.num_epochs * (len(dataloader) // args.accumulation_steps),
|
||||
warmup_steps=args.warmup_steps,
|
||||
eta_min=0.1 * args.lr,
|
||||
)
|
||||
|
||||
# Flash attention will be disabled because it does NOT support fp32.
|
||||
default_dtype = torch.float16 if args.mixed_precision == "fp16" else torch.bfloat16
|
||||
torch.set_default_dtype(default_dtype)
|
||||
model, optimizer, _, dataloader, lr_scheduler = booster.boost(
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
lr_scheduler=lr_scheduler,
|
||||
dataloader=dataloader,
|
||||
)
|
||||
|
||||
torch.set_default_dtype(torch.float)
|
||||
|
||||
if args.load_checkpoint is None:
|
||||
coordinator.print_on_master(f"Load pretrained model checkpoint from {args.pretrained}")
|
||||
booster.load_model(model, args.pretrained, strict=False)
|
||||
|
||||
coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB")
|
||||
coordinator.print_on_master(
|
||||
f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB"
|
||||
)
|
||||
|
||||
start_epoch = 0
|
||||
start_step = 0
|
||||
sampler_start_idx = 0
|
||||
if args.load_checkpoint is not None:
|
||||
if "modeling" in args.load_checkpoint:
|
||||
coordinator.print_on_master(f"Continued pretrain from checkpoint {args.load_checkpoint}")
|
||||
booster.load_model(model, args.load_checkpoint)
|
||||
else:
|
||||
coordinator.print_on_master(f"Load model checkpoint from {args.load_checkpoint}")
|
||||
start_epoch, start_step, sampler_start_idx = load_checkpoint(
|
||||
load_dir=args.load_checkpoint,
|
||||
booster=booster,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
lr_scheduler=lr_scheduler,
|
||||
)
|
||||
coordinator.print_on_master(
|
||||
f"Loaded checkpoint {args.load_checkpoint} at epoch {start_epoch} step {start_step}"
|
||||
)
|
||||
coordinator.print_on_master(f"Loaded sample at index {sampler_start_idx}")
|
||||
|
||||
coordinator.print_on_master(
|
||||
f"Checkpoint loaded max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB"
|
||||
)
|
||||
coordinator.print_on_master(
|
||||
f"Checkpoint loaded CUDA memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB"
|
||||
)
|
||||
coordinator.print_on_master(
|
||||
f"Checkpoint loaded max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB"
|
||||
)
|
||||
|
||||
if args.use_neft:
|
||||
coordinator.print_on_master("Activate NEFTune.")
|
||||
model, handle = activate_neftune(model)
|
||||
|
||||
num_steps_per_epoch = len(dataloader) // args.accumulation_steps
|
||||
# If resume training, set the sampler start index to the correct value
|
||||
assert isinstance(dataloader.sampler, StatefulDistributedSampler)
|
||||
dataloader.sampler.set_start_index(start_index=sampler_start_idx)
|
||||
|
||||
for epoch in range(start_epoch, args.num_epochs):
|
||||
dataloader.sampler.set_epoch(epoch=epoch)
|
||||
pbar = tqdm(desc=f"Epoch {epoch}", disable=not coordinator.is_master(), total=num_steps_per_epoch)
|
||||
total_loss = torch.tensor(0.0).to(torch.cuda.current_device())
|
||||
for step, batch in enumerate(dataloader):
|
||||
batch = {k: v.to(get_current_device()) for k, v in batch.items() if isinstance(v, torch.Tensor)}
|
||||
|
||||
batch_output = model(**batch)
|
||||
|
||||
loss = batch_output.loss / args.accumulation_steps
|
||||
total_loss += loss.item()
|
||||
|
||||
booster.backward(loss=loss, optimizer=optimizer)
|
||||
|
||||
if (step + 1) % args.accumulation_steps == 0:
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
all_reduce_mean(tensor=total_loss)
|
||||
pbar.set_postfix({"Loss": f"{total_loss.item():.4f}"})
|
||||
if coordinator.is_master():
|
||||
global_step = (epoch * num_steps_per_epoch) + (step + 1) // args.accumulation_steps
|
||||
writer.add_scalar(tag="Loss", scalar_value=total_loss.item(), global_step=global_step)
|
||||
writer.add_scalar(
|
||||
tag="Learning Rate",
|
||||
scalar_value=lr_scheduler.get_last_lr()[0],
|
||||
global_step=global_step,
|
||||
)
|
||||
total_loss.fill_(0.0)
|
||||
pbar.update()
|
||||
# Save modeling.
|
||||
|
||||
if (args.save_interval > 0 and (step + 1) % (args.save_interval * args.accumulation_steps) == 0) or (
|
||||
step + 1
|
||||
) == len(dataloader):
|
||||
coordinator.print_on_master("\nStart saving model checkpoint with running states")
|
||||
|
||||
if args.use_neft:
|
||||
coordinator.print_on_master("Deactivate NEFTune before saving model.")
|
||||
deactivate_neftune(model, handle)
|
||||
|
||||
save_checkpoint(
|
||||
save_dir=args.save_dir,
|
||||
booster=booster,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
lr_scheduler=lr_scheduler,
|
||||
epoch=epoch,
|
||||
step=step + 1,
|
||||
batch_size=args.micro_batch_size,
|
||||
coordinator=coordinator,
|
||||
)
|
||||
coordinator.print_on_master(
|
||||
f"Saved checkpoint at epoch {epoch} step {step + 1} at folder {args.save_dir}"
|
||||
)
|
||||
|
||||
if args.use_neft:
|
||||
coordinator.print_on_master("Activate NEFTune.")
|
||||
model, handle = activate_neftune(model)
|
||||
|
||||
# Delete CUDA cache.
|
||||
# del batch, batch_labels, batch_output, loss
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# the continue epochs are not resumed, so we need to reset the sampler start index and start step
|
||||
dataloader.sampler.set_start_index(start_index=0)
|
||||
start_step = 0
|
||||
|
||||
if args.use_neft:
|
||||
coordinator.print_on_master("Deactivate NEFTune.")
|
||||
deactivate_neftune(model, handle)
|
||||
|
||||
# Final save.
|
||||
coordinator.print_on_master("Start saving final model checkpoint")
|
||||
booster.save_model(model, os.path.join(args.save_dir, "modeling"), shard=True)
|
||||
coordinator.print_on_master(f"Saved final model checkpoint at epoch {epoch} at folder {args.save_dir}")
|
||||
|
||||
coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue